IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v131y2001i3p559-571.html
   My bibliography  Save this article

Ship scheduling with soft time windows: An optimisation based approach

Author

Listed:
  • Fagerholt, Kjetil

Abstract

No abstract is available for this item.

Suggested Citation

  • Fagerholt, Kjetil, 2001. "Ship scheduling with soft time windows: An optimisation based approach," European Journal of Operational Research, Elsevier, vol. 131(3), pages 559-571, June.
  • Handle: RePEc:eee:ejores:v:131:y:2001:i:3:p:559-571
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(00)00098-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dumas, Yvan & Desrosiers, Jacques & Soumis, Francois, 1991. "The pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 54(1), pages 7-22, September.
    2. Kjetil Fagerholt, 2000. "Evaluating the trade-off between the level of customer service and transportation costs in a ship scheduling problem," Maritime Policy & Management, Taylor & Francis Journals, vol. 27(2), pages 145-153, April.
    3. Gerald G. Brown & Glenn W. Graves & David Ronen, 1987. "Scheduling Ocean Transportation of Crude Oil," Management Science, INFORMS, vol. 33(3), pages 335-346, March.
    4. Yvan Dumas & François Soumis & Jacques Desrosiers, 1990. "Technical Note—Optimizing the Schedule for a Fixed Vehicle Path with Convex Inconvenience Costs," Transportation Science, INFORMS, vol. 24(2), pages 145-152, May.
    5. Thomas R. Sexton & Lawrence D. Bodin, 1985. "Optimizing Single Vehicle Many-to-Many Operations with Desired Delivery Times: I. Scheduling," Transportation Science, INFORMS, vol. 19(4), pages 378-410, November.
    6. Dan O. Bausch & Gerald G. Brown & David Ronen, 1998. "Scheduling short-term marine transport of bulk products," Maritime Policy & Management, Taylor & Francis Journals, vol. 25(4), pages 335-348, October.
    7. Éric Taillard & Philippe Badeau & Michel Gendreau & François Guertin & Jean-Yves Potvin, 1997. "A Tabu Search Heuristic for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 31(2), pages 170-186, May.
    8. Ferland, Jacques A. & Fortin, Luc, 1989. "Vehicles scheduling with sliding time windows," European Journal of Operational Research, Elsevier, vol. 38(2), pages 213-226, January.
    9. Yiannis A. Koskosidis & Warren B. Powell & Marius M. Solomon, 1992. "An Optimization-Based Heuristic for Vehicle Routing and Scheduling with Soft Time Window Constraints," Transportation Science, INFORMS, vol. 26(2), pages 69-85, May.
    10. Thomas R. Sexton & Lawrence D. Bodin, 1985. "Optimizing Single Vehicle Many-to-Many Operations with Desired Delivery Times: II. Routing," Transportation Science, INFORMS, vol. 19(4), pages 411-435, November.
    11. Yvan Dumas & Jacques Desrosiers & Eric Gelinas & Marius M. Solomon, 1995. "An Optimal Algorithm for the Traveling Salesman Problem with Time Windows," Operations Research, INFORMS, vol. 43(2), pages 367-371, April.
    12. Ronen, David, 1993. "Ship scheduling: The last decade," European Journal of Operational Research, Elsevier, vol. 71(3), pages 325-333, December.
    13. Ronen, David, 1983. "Cargo ships routing and scheduling: Survey of models and problems," European Journal of Operational Research, Elsevier, vol. 12(2), pages 119-126, February.
    14. K Fagerholt & M Christiansen, 2000. "A combined ship scheduling and allocation problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(7), pages 834-842, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marielle Christiansen & Kjetil Fagerholt, 2002. "Robust ship scheduling with multiple time windows," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(6), pages 611-625, September.
    2. Matteo Salani & Maria Battarra, 2018. "The opportunity cost of time window violations," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(4), pages 343-361, December.
    3. K Fagerholt & G Laporte & I Norstad, 2010. "Reducing fuel emissions by optimizing speed on shipping routes," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 523-529, March.
    4. Meng, Qiang & Wang, Shuaian & Lee, Chung-Yee, 2015. "A tailored branch-and-price approach for a joint tramp ship routing and bunkering problem," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 1-19.
    5. Hideki Hashimoto & Mutsunori Yagiura & Shinji Imahori & Toshihide Ibaraki, 2013. "Recent progress of local search in handling the time window constraints of the vehicle routing problem," Annals of Operations Research, Springer, vol. 204(1), pages 171-187, April.
    6. Mitrovic-Minic, Snezana & Laporte, Gilbert, 2004. "Waiting strategies for the dynamic pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 635-655, August.
    7. Ricardo Gatica & Pablo Miranda, 2011. "Special Issue on Latin-American Research: A Time Based Discretization Approach for Ship Routing and Scheduling with Variable Speed," Networks and Spatial Economics, Springer, vol. 11(3), pages 465-485, September.
    8. R A Russell & T L Urban, 2008. "Vehicle routing with soft time windows and Erlang travel times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1220-1228, September.
    9. Fagerholt, Kjetil & Christiansen, Marielle & Magnus Hvattum, Lars & Johnsen, Trond A.V. & Vabø, Thor J., 2010. "A decision support methodology for strategic planning in maritime transportation," Omega, Elsevier, vol. 38(6), pages 465-474, December.
    10. Sambracos, E. & Paravantis, J. A. & Tarantilis, C. D. & Kiranoudis, C. T., 2004. "Dispatching of small containers via coastal freight liners: The case of the Aegean Sea," European Journal of Operational Research, Elsevier, vol. 152(2), pages 365-381, January.
    11. Harilaos N. Psaraftis, 2019. "Ship routing and scheduling: the cart before the horse conjecture," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 21(1), pages 111-124, March.
    12. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    13. Persson, Jan A. & Gothe-Lundgren, Maud, 2005. "Shipment planning at oil refineries using column generation and valid inequalities," European Journal of Operational Research, Elsevier, vol. 163(3), pages 631-652, June.
    14. Pang, King-Wah & Xu, Zhou & Li, Chung-Lun, 2011. "Ship routing problem with berthing time clash avoidance constraints," International Journal of Production Economics, Elsevier, vol. 131(2), pages 752-762, June.
    15. K Fagerholt & B A Foss & O J Horgen, 2009. "A decision support model for establishing an air taxi service: a case study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(9), pages 1173-1182, September.
    16. Homsi, Gabriel & Martinelli, Rafael & Vidal, Thibaut & Fagerholt, Kjetil, 2020. "Industrial and tramp ship routing problems: Closing the gap for real-scale instances," European Journal of Operational Research, Elsevier, vol. 283(3), pages 972-990.
    17. Diana, Marco & Dessouky, Maged M., 2004. "A new regret insertion heuristic for solving large-scale dial-a-ride problems with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 539-557, July.
    18. Mahmoudi, Monirehalsadat & Zhou, Xuesong, 2016. "Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: A dynamic programming approach based on state–space–time network representations," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 19-42.
    19. Qie He & Stefan Irnich & Yongjia Song, 2018. "Branch-Cut-and-Price for the Vehicle Routing Problem with Time Windows and Convex Node Costs," Working Papers 1804, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    20. Sun, Qinghe & Meng, Qiang & Chou, Mabel C., 2021. "Optimizing voyage charterparty (VCP) arrangement: Laytime negotiation and operations coordination," European Journal of Operational Research, Elsevier, vol. 291(1), pages 263-270.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:131:y:2001:i:3:p:559-571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.