IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v61y2010i3d10.1057_jors.2009.77.html
   My bibliography  Save this article

Reducing fuel emissions by optimizing speed on shipping routes

Author

Listed:
  • K Fagerholt

    (Norwegian University of Science and Technology)

  • G Laporte

    (Canada Research Chair in Distribution Management, HEC)

  • I Norstad

    (Norwegian University of Science and Technology
    Norwegian Marine Technology Research Institute (MARINTEK))

Abstract

Fuel consumption and emissions on a shipping route are typically a cubic function of speed. Given a shipping route consisting of a sequence of ports with a time window for the start of service, substantial savings can be achieved by optimizing the speed of each leg. This problem is cast as a non-linear continuous program, which can be solved by a non-linear programming solver. We propose an alternative solution methodology, in which the arrival times are discretized and the problem is solved as a shortest path problem on a directed acyclic graph. Extensive computational results confirm the superiority of the shortest path approach and the potential for fuel savings on shipping routes.

Suggested Citation

  • K Fagerholt & G Laporte & I Norstad, 2010. "Reducing fuel emissions by optimizing speed on shipping routes," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 523-529, March.
  • Handle: RePEc:pal:jorsoc:v:61:y:2010:i:3:d:10.1057_jors.2009.77
    DOI: 10.1057/jors.2009.77
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2009.77
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2009.77?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nikiforos A. Papadakis & Anastassios N. Perakis, 1989. "A nonlinear approach to the multiorigin, multidestination fleet deployment problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(4), pages 515-528, August.
    2. Gerald G. Brown & Glenn W. Graves & David Ronen, 1987. "Scheduling Ocean Transportation of Crude Oil," Management Science, INFORMS, vol. 33(3), pages 335-346, March.
    3. Yvan Dumas & François Soumis & Jacques Desrosiers, 1990. "Technical Note—Optimizing the Schedule for a Fixed Vehicle Path with Convex Inconvenience Costs," Transportation Science, INFORMS, vol. 24(2), pages 145-152, May.
    4. Dan O. Bausch & Gerald G. Brown & David Ronen, 1998. "Scheduling short-term marine transport of bulk products," Maritime Policy & Management, Taylor & Francis Journals, vol. 25(4), pages 335-348, October.
    5. Thomas R. Sexton & Lawrence D. Bodin, 1985. "Optimizing Single Vehicle Many-to-Many Operations with Desired Delivery Times: I. Scheduling," Transportation Science, INFORMS, vol. 19(4), pages 378-410, November.
    6. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    7. Fagerholt, Kjetil, 2001. "Ship scheduling with soft time windows: An optimisation based approach," European Journal of Operational Research, Elsevier, vol. 131(3), pages 559-571, June.
    8. Thomas R. Sexton & Lawrence D. Bodin, 1985. "Optimizing Single Vehicle Many-to-Many Operations with Desired Delivery Times: II. Routing," Transportation Science, INFORMS, vol. 19(4), pages 411-435, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fagerholt, Kjetil, 2001. "Ship scheduling with soft time windows: An optimisation based approach," European Journal of Operational Research, Elsevier, vol. 131(3), pages 559-571, June.
    2. Marielle Christiansen & Kjetil Fagerholt, 2002. "Robust ship scheduling with multiple time windows," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(6), pages 611-625, September.
    3. Al-Khayyal, Faiz & Hwang, Seung-June, 2007. "Inventory constrained maritime routing and scheduling for multi-commodity liquid bulk, Part I: Applications and model," European Journal of Operational Research, Elsevier, vol. 176(1), pages 106-130, January.
    4. Matteo Salani & Maria Battarra, 2018. "The opportunity cost of time window violations," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(4), pages 343-361, December.
    5. Said El Noshokaty, 2017. "Shipping Optimisation Systems (SOS): tramp optimisation perspective," Journal of Shipping and Trade, Springer, vol. 2(1), pages 1-36, December.
    6. K Fagerholt & B A Foss & O J Horgen, 2009. "A decision support model for establishing an air taxi service: a case study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(9), pages 1173-1182, September.
    7. Qie He & Stefan Irnich & Yongjia Song, 2018. "Branch-Cut-and-Price for the Vehicle Routing Problem with Time Windows and Convex Node Costs," Working Papers 1804, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    8. Bin Yu & Zixuan Peng & Zhihui Tian & Baozhen Yao, 2019. "Sailing speed optimization for tramp ships with fuzzy time window," Flexible Services and Manufacturing Journal, Springer, vol. 31(2), pages 308-330, June.
    9. Harilaos N. Psaraftis, 2019. "Ship routing and scheduling: the cart before the horse conjecture," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 21(1), pages 111-124, March.
    10. Gustavo Diz & Luiz Felipe Scavarda & Roger Rocha & Silvio Hamacher, 2014. "Decision Support System for PETROBRAS Ship Scheduling," Interfaces, INFORMS, vol. 44(6), pages 555-566, December.
    11. Wu, Lingxiao & Pan, Kai & Wang, Shuaian & Yang, Dong, 2018. "Bulk ship scheduling in industrial shipping with stochastic backhaul canvassing demand," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 117-136.
    12. Ricardo Gatica & Pablo Miranda, 2011. "Special Issue on Latin-American Research: A Time Based Discretization Approach for Ship Routing and Scheduling with Variable Speed," Networks and Spatial Economics, Springer, vol. 11(3), pages 465-485, September.
    13. Kjetil Fagerholt *, 2004. "Designing optimal routes in a liner shipping problem," Maritime Policy & Management, Taylor & Francis Journals, vol. 31(4), pages 259-268, October.
    14. J E Korsvik & K Fagerholt & G Laporte, 2010. "A tabu search heuristic for ship routing and scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 594-603, April.
    15. Meng, Qiang & Wang, Shuaian & Lee, Chung-Yee, 2015. "A tailored branch-and-price approach for a joint tramp ship routing and bunkering problem," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 1-19.
    16. Desaulniers, Guy & Lavigne, June & Soumis, Francois, 1998. "Multi-depot vehicle scheduling problems with time windows and waiting costs," European Journal of Operational Research, Elsevier, vol. 111(3), pages 479-494, December.
    17. Fagerholt, Kjetil & Christiansen, Marielle & Magnus Hvattum, Lars & Johnsen, Trond A.V. & Vabø, Thor J., 2010. "A decision support methodology for strategic planning in maritime transportation," Omega, Elsevier, vol. 38(6), pages 465-474, December.
    18. Hideki Hashimoto & Mutsunori Yagiura & Shinji Imahori & Toshihide Ibaraki, 2013. "Recent progress of local search in handling the time window constraints of the vehicle routing problem," Annals of Operations Research, Springer, vol. 204(1), pages 171-187, April.
    19. G Brønmo & M Christiansen & B Nygreen, 2007. "Ship routing and scheduling with flexible cargo sizes," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(9), pages 1167-1177, September.
    20. Mitrovic-Minic, Snezana & Laporte, Gilbert, 2004. "Waiting strategies for the dynamic pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 635-655, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:61:y:2010:i:3:d:10.1057_jors.2009.77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.