IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v131y2011i2p752-762.html
   My bibliography  Save this article

Ship routing problem with berthing time clash avoidance constraints

Author

Listed:
  • Pang, King-Wah
  • Xu, Zhou
  • Li, Chung-Lun

Abstract

We consider a ship routing problem in which multiple vessels have to perform pickups and deliveries of cargoes at various locations. The loading and unloading time of cargoes at pickup and delivery locations is significant, and at each of these locations we need to assign a time slot to each vessel to perform the loading/unloading task so as to avoid time clashes. This problem is motivated by the operations of feeder vessels and company-owned cargo terminals, where the shipping company wishes to coordinate the routing and the berthing time of its vessels. We develop a heuristic algorithm for the problem using set partitioning formulation and column generation techniques. The effectiveness of the heuristic is tested via extensive computational experiments.

Suggested Citation

  • Pang, King-Wah & Xu, Zhou & Li, Chung-Lun, 2011. "Ship routing problem with berthing time clash avoidance constraints," International Journal of Production Economics, Elsevier, vol. 131(2), pages 752-762, June.
  • Handle: RePEc:eee:proeco:v:131:y:2011:i:2:p:752-762
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(11)00134-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dumas, Yvan & Desrosiers, Jacques & Soumis, Francois, 1991. "The pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 54(1), pages 7-22, September.
    2. Krishan Rana & R. G. Vickson, 1991. "Routing Container Ships Using Lagrangean Relaxation and Decomposition," Transportation Science, INFORMS, vol. 25(3), pages 201-214, August.
    3. Gerardo Berbeglia & Jean-François Cordeau & Irina Gribkovskaia & Gilbert Laporte, 2007. "Rejoinder on: Static pickup and delivery problems: a classification scheme and survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 45-47, July.
    4. Bilgen, Bilge & Ozkarahan, Irem, 2007. "A mixed-integer linear programming model for bulk grain blending and shipping," International Journal of Production Economics, Elsevier, vol. 107(2), pages 555-571, June.
    5. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    6. Endre Boros & Lei Lei & Yao Zhao & Hua Zhong, 2008. "Scheduling vessels and container-yard operations with conflicting objectives," Annals of Operations Research, Springer, vol. 161(1), pages 149-170, July.
    7. Wasner, Michael & Zapfel, Gunther, 2004. "An integrated multi-depot hub-location vehicle routing model for network planning of parcel service," International Journal of Production Economics, Elsevier, vol. 90(3), pages 403-419, August.
    8. Brønmo, Geir & Nygreen, Bjørn & Lysgaard, Jens, 2010. "Column generation approaches to ship scheduling with flexible cargo sizes," European Journal of Operational Research, Elsevier, vol. 200(1), pages 139-150, January.
    9. Ronen, David, 1983. "Cargo ships routing and scheduling: Survey of models and problems," European Journal of Operational Research, Elsevier, vol. 12(2), pages 119-126, February.
    10. G Brønmo & M Christiansen & B Nygreen, 2007. "Ship routing and scheduling with flexible cargo sizes," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(9), pages 1167-1177, September.
    11. M. W. P. Savelsbergh & M. Sol, 1995. "The General Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 29(1), pages 17-29, February.
    12. Cheung, Bernard K.-S. & Choy, K.L. & Li, Chung-Lun & Shi, Wenzhong & Tang, Jian, 2008. "Dynamic routing model and solution methods for fleet management with mobile technologies," International Journal of Production Economics, Elsevier, vol. 113(2), pages 694-705, June.
    13. Goetschalckx, Marc & Jacobs-Blecha, Charlotte, 1989. "The vehicle routing problem with backhauls," European Journal of Operational Research, Elsevier, vol. 42(1), pages 39-51, September.
    14. Richa Agarwal & Özlem Ergun, 2008. "Ship Scheduling and Network Design for Cargo Routing in Liner Shipping," Transportation Science, INFORMS, vol. 42(2), pages 175-196, May.
    15. B. J. Powell & A .N. Perkins, 1997. "Fleet deployment optimization for liner shipping: an integer programming model," Maritime Policy & Management, Taylor & Francis Journals, vol. 24(2), pages 183-192, January.
    16. Gerardo Berbeglia & Jean-François Cordeau & Irina Gribkovskaia & Gilbert Laporte, 2007. "Static pickup and delivery problems: a classification scheme and survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-31, July.
    17. Hee-Su Hwang & Siriwat Visoldilokpun & Jay M. Rosenberger, 2008. "A Branch-and-Price-and-Cut Method for Ship Scheduling with Limited Risk," Transportation Science, INFORMS, vol. 42(3), pages 336-351, August.
    18. Kritikos, Manolis N. & Ioannou, George, 2010. "The balanced cargo vehicle routing problem with time windows," International Journal of Production Economics, Elsevier, vol. 123(1), pages 42-51, January.
    19. Li, Xiangyong & Tian, Peng & Leung, Stephen C.H., 2010. "Vehicle routing problems with time windows and stochastic travel and service times: Models and algorithm," International Journal of Production Economics, Elsevier, vol. 125(1), pages 137-145, May.
    20. Roar Grønhaug & Marielle Christiansen, 2009. "Supply Chain Optimization for the Liquefied Natural Gas Business," Lecture Notes in Economics and Mathematical Systems, in: Jo A.E.E. Nunen & M. Grazia Speranza & Luca Bertazzi (ed.), Innovations in Distribution Logistics, chapter 10, pages 195-218, Springer.
    21. Martin Savelsbergh & Marc Sol, 1998. "Drive: Dynamic Routing of Independent Vehicles," Operations Research, INFORMS, vol. 46(4), pages 474-490, August.
    22. Ronen, David, 1993. "Ship scheduling: The last decade," European Journal of Operational Research, Elsevier, vol. 71(3), pages 325-333, December.
    23. K Fagerholt & M Christiansen, 2000. "A combined ship scheduling and allocation problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(7), pages 834-842, July.
    24. Hang Xu & Zhi-Long Chen & Srinivas Rajagopal & Sundar Arunapuram, 2003. "Solving a Practical Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 37(3), pages 347-364, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia, Shuai & Li, Chung-Lun & Xu, Zhou, 2020. "A simulation optimization method for deep-sea vessel berth planning and feeder arrival scheduling at a container port," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 174-196.
    2. Iassinovskaia, Galina & Limbourg, Sabine & Riane, Fouad, 2017. "The inventory-routing problem of returnable transport items with time windows and simultaneous pickup and delivery in closed-loop supply chains," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 570-582.
    3. Guo, Liming & Zheng, Jianfeng & Liang, Jinpeng & Wang, Shuaian, 2023. "Column generation for the multi-port berth allocation problem with port cooperation stability," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 3-28.
    4. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship fleet deployment with container transshipment operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 470-484.
    5. Christiansen, Marielle & Fagerholt, Kjetil & Nygreen, Bjørn & Ronen, David, 2013. "Ship routing and scheduling in the new millennium," European Journal of Operational Research, Elsevier, vol. 228(3), pages 467-483.
    6. Yu, Junfang & Dong, Yuanyuan, 2013. "Maximizing profit for vehicle routing under time and weight constraints," International Journal of Production Economics, Elsevier, vol. 145(2), pages 573-583.
    7. Zheng, Huarong & Negenborn, Rudy R. & Lodewijks, Gabriël, 2017. "Closed-loop scheduling and control of waterborne AGVs for energy-efficient Inter Terminal Transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 261-278.
    8. Zhen, Lu & Shen, Tao & Wang, Shuaian & Yu, Shucheng, 2016. "Models on ship scheduling in transshipment hubs with considering bunker cost," International Journal of Production Economics, Elsevier, vol. 173(C), pages 111-121.
    9. Nikolaos P. Rachaniotis & Marisa Masvoula, 2020. "A decision tool for scheduling fleets of fuel supply vessels," Operational Research, Springer, vol. 20(3), pages 1543-1557, September.
    10. Ting, Chuan-Kang & Liao, Xin-Lan, 2013. "The selective pickup and delivery problem: Formulation and a memetic algorithm," International Journal of Production Economics, Elsevier, vol. 141(1), pages 199-211.
    11. Lu Zhen & Shucheng Yu & Shuaian Wang & Zhuo Sun, 2019. "Scheduling quay cranes and yard trucks for unloading operations in container ports," Annals of Operations Research, Springer, vol. 273(1), pages 455-478, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christiansen, Marielle & Fagerholt, Kjetil & Nygreen, Bjørn & Ronen, David, 2013. "Ship routing and scheduling in the new millennium," European Journal of Operational Research, Elsevier, vol. 228(3), pages 467-483.
    2. Ricardo Gatica & Pablo Miranda, 2011. "Special Issue on Latin-American Research: A Time Based Discretization Approach for Ship Routing and Scheduling with Variable Speed," Networks and Spatial Economics, Springer, vol. 11(3), pages 465-485, September.
    3. Mulder, Judith & Dekker, Rommert, 2014. "Methods for strategic liner shipping network design," European Journal of Operational Research, Elsevier, vol. 235(2), pages 367-377.
    4. Regnier-Coudert, Olivier & McCall, John & Ayodele, Mayowa & Anderson, Steven, 2016. "Truck and trailer scheduling in a real world, dynamic and heterogeneous context," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 389-408.
    5. Li, Feng & Yang, Dong & Wang, Shuaian & Weng, Jinxian, 2019. "Ship routing and scheduling problem for steel plants cluster alongside the Yangtze River," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 198-210.
    6. Qiang Meng & Shuaian Wang & Henrik Andersson & Kristian Thun, 2014. "Containership Routing and Scheduling in Liner Shipping: Overview and Future Research Directions," Transportation Science, INFORMS, vol. 48(2), pages 265-280, May.
    7. Liu, Ran & Xie, Xiaolan & Augusto, Vincent & Rodriguez, Carlos, 2013. "Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care," European Journal of Operational Research, Elsevier, vol. 230(3), pages 475-486.
    8. Harilaos N. Psaraftis, 2019. "Ship routing and scheduling: the cart before the horse conjecture," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 21(1), pages 111-124, March.
    9. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship fleet deployment with container transshipment operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 470-484.
    10. Qiang Meng & Tingsong Wang, 2010. "A chance constrained programming model for short-term liner ship fleet planning problems," Maritime Policy & Management, Taylor & Francis Journals, vol. 37(4), pages 329-346, July.
    11. Cortés, Cristián E. & Matamala, Martín & Contardo, Claudio, 2010. "The pickup and delivery problem with transfers: Formulation and a branch-and-cut solution method," European Journal of Operational Research, Elsevier, vol. 200(3), pages 711-724, February.
    12. Chen, Kang & Yang, Zhongzhen & Notteboom, Theo, 2014. "The design of coastal shipping services subject to carbon emission reduction targets and state subsidy levels," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 192-211.
    13. Capelle, Thomas & Cortés, Cristián E. & Gendreau, Michel & Rey, Pablo A. & Rousseau, Louis-Martin, 2019. "A column generation approach for location-routing problems with pickup and delivery," European Journal of Operational Research, Elsevier, vol. 272(1), pages 121-131.
    14. Qiang Meng & Tingsong Wang & Shuaian Wang, 2015. "Multi-period liner ship fleet planning with dependent uncertain container shipment demand," Maritime Policy & Management, Taylor & Francis Journals, vol. 42(1), pages 43-67, January.
    15. Paul Buijs & Jose Alejandro Lopez Alvarez & Marjolein Veenstra & Kees Jan Roodbergen, 2016. "Improved Collaborative Transport Planning at Dutch Logistics Service Provider Fritom," Interfaces, INFORMS, vol. 46(2), pages 119-132, April.
    16. Chen, Kang & Chen, Dongxu & Sun, Xueshan & Yang, Zhongzhen, 2016. "Container Ocean-transportation System Design with the factors of demand fluctuation and choice inertia of shippers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 267-281.
    17. Meng, Qiang & Wang, Shuaian & Lee, Chung-Yee, 2015. "A tailored branch-and-price approach for a joint tramp ship routing and bunkering problem," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 1-19.
    18. Manuel Herrera & Per J. Agrell & Casiano Manrique-de-Lara-Peñate & Lourdes Trujillo, 2017. "Vessel capacity restrictions in the fleet deployment problem: an application to the Panama Canal," Annals of Operations Research, Springer, vol. 253(2), pages 845-869, June.
    19. Meng, Qiang & Wang, Shuaian, 2012. "Liner ship fleet deployment with week-dependent container shipment demand," European Journal of Operational Research, Elsevier, vol. 222(2), pages 241-252.
    20. Lee, Chung-Yee & Lee, Hau L. & Zhang, Jiheng, 2015. "The impact of slow ocean steaming on delivery reliability and fuel consumption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 176-190.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:131:y:2011:i:2:p:752-762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.