IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v473y2022ics0304380022001211.html
   My bibliography  Save this article

System dynamics life cycle-based carbon model for consumption changes in urban metabolism

Author

Listed:
  • Elliot, Thomas
  • Levasseur, Annie

Abstract

Materials and energy consumed by urban systems are one of the main sources of greenhouse gas emissions. Measuring these flows and their associated emissions is necessary to estimate the impact of cities on climate change in the future. In this research we developed a dynamic model for measuring the carbon footprint of cities’ urban metabolism using an integrated socio-ecological systems approach. Illustrated with a case study in Montreal we modelled the urban carbon footprint between 2000 and 2018, and simulated on to 2030 under four scenarios: baseline, increasing adoption of plant-based diets (PBD), pavement/road material circularity (PMC), and a combined approach of the latter two. By simultaneously modelling Montreal's population growth the GHG per capita trend was compared to the anticipated 2030 global threshold of 2.9 t CO2e per person needed to meet the 1.5°C Paris Agreement target. All scenarios result in decreased per capita emissions from 15.0 t CO2e/capita in 2018, in part due to the increasing urban population. The baseline scenario estimates a decrease to 12.7 t CO2e by 2030; the PBD and PMC scenarios estimate respective reductions to 10.8 and 12.4 t CO2e/capita by 2030. The combined scenario estimates a greater reduction to 10.5 t CO2e/capita, but this is still 7.6 t CO2e/capita over the Paris Agreement target for 1.5°C global warming.

Suggested Citation

  • Elliot, Thomas & Levasseur, Annie, 2022. "System dynamics life cycle-based carbon model for consumption changes in urban metabolism," Ecological Modelling, Elsevier, vol. 473(C).
  • Handle: RePEc:eee:ecomod:v:473:y:2022:i:c:s0304380022001211
    DOI: 10.1016/j.ecolmodel.2022.110010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380022001211
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.110010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elliot, T. & Torres-Matallana, J.A. & Goldstein, B. & Babí Almenar, J. & Gómez-Baggethun, E. & Proença, V. & Rugani, B., 2022. "An expanded framing of ecosystem services is needed for a sustainable urban future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Lucia Recchia & Alessio Cappelli & Enrico Cini & Francesco Garbati Pegna & Paolo Boncinelli, 2019. "Environmental Sustainability of Pasta Production Chains: An Integrated Approach for Comparing Local and Global Chains," Resources, MDPI, vol. 8(1), pages 1-16, March.
    3. Timothy M. Lenton, 2014. "Tipping climate cooperation," Nature Climate Change, Nature, vol. 4(1), pages 14-15, January.
    4. Andrea Baranzini, Stefano Carattini, Martin Peclat, 2017. "What drives social contagion in the adoption of solar photovoltaic technology," GRI Working Papers 270, Grantham Research Institute on Climate Change and the Environment.
    5. Benjamin Goldstein & Morten Birkved & John Fernández & Michael Hauschild, 2017. "Surveying the Environmental Footprint of Urban Food Consumption," Journal of Industrial Ecology, Yale University, vol. 21(1), pages 151-165, February.
    6. Huo, Hong & He, Kebin & Wang, Michael & Yao, Zhiliang, 2012. "Vehicle technologies, fuel-economy policies, and fuel-consumption rates of Chinese vehicles," Energy Policy, Elsevier, vol. 43(C), pages 30-36.
    7. Adriana AnaMaria Davidescu & Simona-Andreea Apostu & Andreea Paul, 2020. "Exploring Citizens’ Actions in Mitigating Climate Change and Moving toward Urban Circular Economy. A Multilevel Approach," Energies, MDPI, vol. 13(18), pages 1-46, September.
    8. Neil Quarles & Kara M. Kockelman & Moataz Mohamed, 2020. "Costs and Benefits of Electrifying and Automating Bus Transit Fleets," Sustainability, MDPI, vol. 12(10), pages 1-15, May.
    9. Joeri Rogelj & Alexander Popp & Katherine V. Calvin & Gunnar Luderer & Johannes Emmerling & David Gernaat & Shinichiro Fujimori & Jessica Strefler & Tomoko Hasegawa & Giacomo Marangoni & Volker Krey &, 2018. "Scenarios towards limiting global mean temperature increase below 1.5 °C," Nature Climate Change, Nature, vol. 8(4), pages 325-332, April.
    10. Sibel Eker & Gerhard Reese & Michael Obersteiner, 2019. "Modelling the drivers of a widespread shift to sustainable diets," Nature Sustainability, Nature, vol. 2(8), pages 725-735, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Boer, Joop & Aiking, Harry, 2021. "Climate change and species decline: Distinct sources of European consumer concern supporting more sustainable diets," Ecological Economics, Elsevier, vol. 188(C).
    2. Syalie Liu & Sacha Altay & Hugo Mercier, 2022. "Being green or being nice? People are more likely to share nicer but potentially less impactful green messages," Climatic Change, Springer, vol. 174(1), pages 1-14, September.
    3. Zhou, Yu & Meng, Qiang & Ong, Ghim Ping, 2022. "Electric Bus Charging Scheduling for a Single Public Transport Route Considering Nonlinear Charging Profile and Battery Degradation Effect," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 49-75.
    4. Birgit Kopainsky & Anita Frehner & Adrian Müller, 2020. "Sustainable and healthy diets: Synergies and trade‐offs in Switzerland," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 908-927, November.
    5. Raka Jovanovic & Islam Safak Bayram & Sertac Bayhan & Stefan Voß, 2021. "A GRASP Approach for Solving Large-Scale Electric Bus Scheduling Problems," Energies, MDPI, vol. 14(20), pages 1-23, October.
    6. Kate Dooley & Ellycia Harrould‐Kolieb & Anita Talberg, 2021. "Carbon‐dioxide Removal and Biodiversity: A Threat Identification Framework," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 34-44, April.
    7. Florian Kapmeier, 2020. "Reflections on developing a simulation model on sustainable and healthy diets for decision makers: Comment on the paper by Kopainsky," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 928-935, November.
    8. Elke Stehfest & Willem-Jan Zeist & Hugo Valin & Petr Havlik & Alexander Popp & Page Kyle & Andrzej Tabeau & Daniel Mason-D’Croz & Tomoko Hasegawa & Benjamin L. Bodirsky & Katherine Calvin & Jonathan C, 2019. "Key determinants of global land-use projections," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    9. Songyan Ren & Peng Wang & Zewei Lin & Daiqing Zhao, 2022. "The Policy Choice and Economic Assessment of High Emissions Industries to Achieve the Carbon Peak Target under Energy Shortage—A Case Study of Guangdong Province," Energies, MDPI, vol. 15(18), pages 1-22, September.
    10. Bonnet, Céline & Bouamra-Mechemache, Zohra & Réquillart, Vincent & Treich, Nicolas, 2020. "Viewpoint: Regulating meat consumption to improve health, the environment and animal welfare," Food Policy, Elsevier, vol. 97(C).
    11. Chepeliev, Maksym & Diachuk, Oleksandr & Podolets, Roman & Trypolska, Galyna, 2021. "The role of bioenergy in Ukraine's climate mitigation policy by 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    12. Müller, Jonas & Trutnevyte, Evelina, 2020. "Spatial projections of solar PV installations at subnational level: Accuracy testing of regression models," Applied Energy, Elsevier, vol. 265(C).
    13. Christa Brelsford & Caterina De Bacco, 2018. "Are `Water Smart Landscapes' Contagious? An epidemic approach on networks to study peer effects," Papers 1801.10516, arXiv.org.
    14. Wu, Yazhen & Deppermann, Andre & Havlík, Petr & Frank, Stefan & Ren, Ming & Zhao, Hao & Ma, Lin & Fang, Chen & Chen, Qi & Dai, Hancheng, 2023. "Global land-use and sustainability implications of enhanced bioenergy import of China," Applied Energy, Elsevier, vol. 336(C).
    15. Rachel Mazac & Hanna L. Tuomisto, 2020. "The Post-Anthropocene Diet: Navigating Future Diets for Sustainable Food Systems," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
    16. Ángel Galán-Martín & Daniel Vázquez & Selene Cobo & Niall Dowell & José Antonio Caballero & Gonzalo Guillén-Gosálbez, 2021. "Delaying carbon dioxide removal in the European Union puts climate targets at risk," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    17. Müller-Hansen, Finn & Lee, Yuan Ting & Callaghan, Max & Jankin, Slava & Minx, Jan C., 2022. "The German coal debate on Twitter: Reactions to a corporate policy process," Energy Policy, Elsevier, vol. 169(C).
    18. Rolf, Werner & Diehl, Katharina & Zasada, Ingo & Wiggering, Hubert, 2020. "Integrating farmland in urban green infrastructure planning. An evidence synthesis for informed policymaking," Land Use Policy, Elsevier, vol. 99(C).
    19. Kristin Jürkenbeck & Achim Spiller, 2020. "Consumers’ Evaluation of Stockfree-Organic Agriculture—A Segmentation Approach," Sustainability, MDPI, vol. 12(10), pages 1-19, May.
    20. Bergholt, Drago & Røisland, Øistein & Sveen, Tommy & Torvik, Ragnar, 2023. "Monetary policy when export revenues drop," Journal of International Money and Finance, Elsevier, vol. 137(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:473:y:2022:i:c:s0304380022001211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.