IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v152y2021ics1364032121009886.html
   My bibliography  Save this article

The role of bioenergy in Ukraine's climate mitigation policy by 2050

Author

Listed:
  • Chepeliev, Maksym
  • Diachuk, Oleksandr
  • Podolets, Roman
  • Trypolska, Galyna

Abstract

The development of renewable energy sources (RES) is considered to be a key instrument in addressing climate change. However, different RES have different potential and economic feasibility depending on country-specific conditions and mitigation ambitions. Understanding the relative importance of each RES could help policymakers focus their efforts on the most promising options. In this paper, we focus on Ukraine and explore the potential of biomass use under two mitigation scenarios – with 68% and 83% of greenhouse gas emissions reduction in 2050 relative to the 2010 level.

Suggested Citation

  • Chepeliev, Maksym & Diachuk, Oleksandr & Podolets, Roman & Trypolska, Galyna, 2021. "The role of bioenergy in Ukraine's climate mitigation policy by 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:rensus:v:152:y:2021:i:c:s1364032121009886
    DOI: 10.1016/j.rser.2021.111714
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121009886
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111714?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yann Robiou du Pont & M. Louise Jeffery & Johannes Gütschow & Joeri Rogelj & Peter Christoff & Malte Meinshausen, 2017. "Correction: Corrigendum: Equitable mitigation to achieve the Paris Agreement goals," Nature Climate Change, Nature, vol. 7(2), pages 153-153, February.
    2. G. Trypolska & S. Kyryzyuk, 2018. "Development of Ukraine's bioenergy sector in the context of the EU guidelines," Economy and Forecasting, Valeriy Heyets, issue 3, pages 138-159.
    3. H. Trypolska & O. Diachuk & R. Podolets & M. Chepeliev, 2018. "Biogas projects in Ukraine: prospects, consequences and regulatory policy," Economy and Forecasting, Valeriy Heyets, issue 2, pages 111-134.
    4. Sarkar, Nibedita & Ghosh, Sumanta Kumar & Bannerjee, Satarupa & Aikat, Kaustav, 2012. "Bioethanol production from agricultural wastes: An overview," Renewable Energy, Elsevier, vol. 37(1), pages 19-27.
    5. Chasnyk, O. & Sołowski, G. & Shkarupa, O., 2015. "Historical, technical and economic aspects of biogas development: Case of Poland and Ukraine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 227-239.
    6. Savvanidou, Electra & Zervas, Efthimios & Tsagarakis, Konstantinos P., 2010. "Public acceptance of biofuels," Energy Policy, Elsevier, vol. 38(7), pages 3482-3488, July.
    7. Ferreira, L.R.A. & Otto, R.B. & Silva, F.P. & De Souza, S.N.M. & De Souza, S.S. & Ando Junior, O.H., 2018. "Review of the energy potential of the residual biomass for the distributed generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 440-455.
    8. Yann Robiou du Pont & M. Louise Jeffery & Johannes Gütschow & Joeri Rogelj & Peter Christoff & Malte Meinshausen, 2017. "Equitable mitigation to achieve the Paris Agreement goals," Nature Climate Change, Nature, vol. 7(1), pages 38-43, January.
    9. Schaffartzik, Anke & Plank, Christina & Brad, Alina, 2014. "Ukraine and the great biofuel potential? A political material flow analysis," Ecological Economics, Elsevier, vol. 104(C), pages 12-21.
    10. Joeri Rogelj & Alexander Popp & Katherine V. Calvin & Gunnar Luderer & Johannes Emmerling & David Gernaat & Shinichiro Fujimori & Jessica Strefler & Tomoko Hasegawa & Giacomo Marangoni & Volker Krey &, 2018. "Scenarios towards limiting global mean temperature increase below 1.5 °C," Nature Climate Change, Nature, vol. 8(4), pages 325-332, April.
    11. Alisher Mirzabaev & Dawit Guta & Jann Goedecke & Varun Gaur & Jan Börner & Detlef Virchow & Manfred Denich & Joachim von Braun, 2015. "Bioenergy, food security and poverty reduction: trade-offs and synergies along the water-energy-food security nexus," Water International, Taylor & Francis Journals, vol. 40(5-6), pages 772-790, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khabbazan, Mohammad M. & von Hirschhausen, Christian, 2021. "The implication of the Paris targets for the Middle East through different cooperation options," Energy Economics, Elsevier, vol. 104(C).
    2. Gebara, C.H. & Laurent, A., 2023. "National SDG-7 performance assessment to support achieving sustainable energy for all within planetary limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    3. Mauricio Marrone & Martina K Linnenluecke, 2020. "Interdisciplinary Research Maps: A new technique for visualizing research topics," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-16, November.
    4. Kakeu, Johnson & Agbo, Maxime, 2022. "International transfer to reduce global inequality and transboundary pollution," Energy Economics, Elsevier, vol. 114(C).
    5. Karl W. Steininger & Keith Williges & Lukas H. Meyer & Florian Maczek & Keywan Riahi, 2022. "Sharing the effort of the European Green Deal among countries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Jiang, Hong-Dian & Purohit, Pallav & Liang, Qiao-Mei & Dong, Kangyin & Liu, Li-Jing, 2022. "The cost-benefit comparisons of China's and India's NDCs based on carbon marginal abatement cost curves," Energy Economics, Elsevier, vol. 109(C).
    7. Salekpay, Foroogh, 2021. "Distributing the European Union Greenhouse Gas emission 2030," Working Papers 2072/534909, Universitat Rovira i Virgili, Department of Economics.
    8. Marian Leimbach & Nico Bauer, 2022. "Capital markets and the costs of climate policies," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(3), pages 397-420, July.
    9. Michel G. J. Elzen & Ioannis Dafnomilis & Nicklas Forsell & Panagiotis Fragkos & Kostas Fragkiadakis & Niklas Höhne & Takeshi Kuramochi & Leonardo Nascimento & Mark Roelfsema & Heleen Soest & Frank Sp, 2022. "Updated nationally determined contributions collectively raise ambition levels but need strengthening further to keep Paris goals within reach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(5), pages 1-29, June.
    10. Michel G. J. Elzen & Ioannis Dafnomilis & Nicklas Forsell & Panagiotis Fragkos & Kostas Fragkiadakis & Niklas Höhne & Takeshi Kuramochi & Leonardo Nascimento & Mark Roelfsema & Heleen Soest & Frank Sp, 2022. "Updated nationally determined contributions collectively raise ambition levels but need strengthening further to keep Paris goals within reach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-29, August.
    11. Yosuke Arino & Fuminori Sano & Keigo Akimoto, 2017. "Future Fossil Fuel Price Impacts on NDC Achievement; Estimation of GHG Emissions and Mitigation Costs," Eurasian Journal of Economics and Finance, Eurasian Publications, vol. 5(4), pages 16-35.
    12. Athanasoglou, Stergios, 2022. "On the existence of efficient, individually rational, and fair environmental agreements," Journal of Mathematical Economics, Elsevier, vol. 98(C).
    13. Reyseliani, Nadhilah & Hidayatno, Akhmad & Purwanto, Widodo Wahyu, 2022. "Implication of the Paris agreement target on Indonesia electricity sector transition to 2050 using TIMES model," Energy Policy, Elsevier, vol. 169(C).
    14. Carè, R. & Weber, O., 2023. "How much finance is in climate finance? A bibliometric review, critiques, and future research directions," Research in International Business and Finance, Elsevier, vol. 64(C).
    15. Ding, Qingguo & Wang, Jianxiao & Zhang, Bing & Yu, Yang, 2023. "Economic burden of China's fairness regulations on power generation sector," Energy, Elsevier, vol. 278(C).
    16. Chen, Hao & Qi, Shaozhou & Zhang, Jihong, 2022. "Towards carbon neutrality with Chinese characteristics: From an integrated perspective of economic growth-equity-environment," Applied Energy, Elsevier, vol. 324(C).
    17. Milena Büchs & Noel Cass & Caroline Mullen & Karen Lucas & Diana Ivanova, 2023. "Emissions savings from equitable energy demand reduction," Nature Energy, Nature, vol. 8(7), pages 758-769, July.
    18. Khabbazan, Mohammad M. & von Hirschhausen, Christian, 2021. "The implication of the Paris targets for the Middle East through different cooperation options," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 104.
    19. Teddy Serrano & Sandra Aparcana & Fatemeh Bakhtiari & Alexis Laurent, 2021. "Contribution of circular economy strategies to climate change mitigation: Generic assessment methodology with focus on developing countries," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1382-1397, December.
    20. Biying Yu & Zihao Zhao & Yi-Ming Wei & Lan-Cui Liu & Qingyu Zhao & Shuo Xu & Jia-Ning Kang & Hua Liao, 2023. "Approaching national climate targets in China considering the challenge of regional inequality," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:152:y:2021:i:c:s1364032121009886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.