Advanced Search
MyIDEAS: Login

Dynamics of agricultural groundwater extraction

Contents:

Author Info

  • Hellegers, Petra
  • Zilberman, David
  • van Ierland, Ekko

Abstract

Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is developed to study socially optimal agricultural shallow groundwater extraction patterns. It shows the importance of stock size to slow down changes in groundwater quality.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6VDY-42Y7F3H-B/2/e220d3820180012f97f953fcf733d5ee
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Ecological Economics.

Volume (Year): 37 (2001)
Issue (Month): 2 (May)
Pages: 303-311

as in new window
Handle: RePEc:eee:ecolec:v:37:y:2001:i:2:p:303-311

Contact details of provider:
Web page: http://www.elsevier.com/locate/ecolecon

Related research

Keywords:

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Provencher Bill & Burt Oscar, 1993. "The Externalities Associated with the Common Property Exploitation of Groundwater," Journal of Environmental Economics and Management, Elsevier, vol. 24(2), pages 139-158, March.
  2. Fleming, R. A. & Adams, R. M., 1997. "The Importance of Site-Specific Information in the Design of Policies to Control Pollution," Journal of Environmental Economics and Management, Elsevier, vol. 33(3), pages 347-358, July.
  3. Douglas M. Larson & Gloria E. Helfand & Brett W. House, 1996. "Second-Best Tax Policies to Reduce Nonpoint Source Pollution," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(4), pages 1108-1117.
  4. Carlson, Gerald A. & Zilberman, David & Miranowski, John, 1993. "Agricultural and Resource Economics," Staff General Research Papers 11104, Iowa State University, Department of Economics.
  5. Bystrom, Olof, 1998. "The nitrogen abatement cost in wetlands," Ecological Economics, Elsevier, vol. 26(3), pages 321-331, September.
  6. Wichelns, Dennis, 1999. "An economic model of waterlogging and salinization in arid regions," Ecological Economics, Elsevier, vol. 30(3), pages 475-491, September.
  7. Giannias, Dimitrios A. & Lekakis, Joseph N., 1997. "Policy analysis for an amicable, efficient and sustainable inter-country fresh water resource allocation," Ecological Economics, Elsevier, vol. 21(3), pages 231-242, June.
  8. David Zilberman & Neal Macdougall & Farhed Shah, 1994. "Changes In Water Allocation Mechanisms For California Agriculture," Contemporary Economic Policy, Western Economic Association International, vol. 12(1), pages 122-133, 01.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Wasantha Athukorala & Clevo Wilson, 2012. "Groundwater overuse and farm-level technical inefficiency: evidence from Sri Lanka," School of Economics and Finance Discussion Papers and Working Papers Series 279, School of Economics and Finance, Queensland University of Technology.
  2. Lars Gårn Hansen & Frank Jensen & Eirik S. Amundsen, 2011. "Regulating groundwater use in developing countries: a feasible instrument for public intervention," IFRO Working Paper 2011/3, University of Copenhagen, Department of Food and Resource Economics.
  3. Esteban, Encarna & Albiac, José, 2011. "Groundwater and ecosystems damages: Questioning the Gisser-Sánchez effect," Ecological Economics, Elsevier, vol. 70(11), pages 2062-2069, September.
  4. Shiferaw, Bekele & Reddy, V. Ratna & Wani, Suhas P., 2008. "Watershed externalities, shifting cropping patterns and groundwater depletion in Indian semi-arid villages: The effect of alternative water pricing policies," Ecological Economics, Elsevier, vol. 67(2), pages 327-340, September.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:37:y:2001:i:2:p:303-311. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.