IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v106y2022ics0264999321002856.html
   My bibliography  Save this article

Clean energy deserves to be an asset class: A volatility-reward analysis

Author

Listed:
  • Fahmy, Hany

Abstract

Despite the increasing significance of clean energy, the sector has not gained its formal status yet as a separate asset class. Instead, individual clean securities are scattered over conventional classes. We examine the reward of grouping clean equities into a separate new class. Using data between 2011 and 2019, we employ portfolio theory to construct a base portfolio of conventional classes and several green portfolios that consist of the base plus different clean energy indexes. We find that this grouping increases the sector's weight and, hence, its significance in the asset allocation. This, in turn, improves the green returns especially post Paris Agreement. As for the sector's uncertainty, we use a STR model to test and measure the impact of volatility on the nonlinear behavior of clean energy ETFs. We find that the sector's implied volatility index (VXXLE) is superior to oil volatility in capturing the cyclicality of clean ETFs.

Suggested Citation

  • Fahmy, Hany, 2022. "Clean energy deserves to be an asset class: A volatility-reward analysis," Economic Modelling, Elsevier, vol. 106(C).
  • Handle: RePEc:eee:ecmode:v:106:y:2022:i:c:s0264999321002856
    DOI: 10.1016/j.econmod.2021.105696
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999321002856
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2021.105696?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elie, Bouri & Naji, Jalkh & Dutta, Anupam & Uddin, Gazi Salah, 2019. "Gold and crude oil as safe-haven assets for clean energy stock indices: Blended copulas approach," Energy, Elsevier, vol. 178(C), pages 544-553.
    2. Kapetanios, George & Shin, Yongcheol & Snell, Andy, 2003. "Testing for a unit root in the nonlinear STAR framework," Journal of Econometrics, Elsevier, vol. 112(2), pages 359-379, February.
    3. Reboredo, Juan C. & Rivera-Castro, Miguel A. & Ugolini, Andrea, 2017. "Wavelet-based test of co-movement and causality between oil and renewable energy stock prices," Energy Economics, Elsevier, vol. 61(C), pages 241-252.
    4. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    5. Arno Riedl & Paul Smeets, 2017. "Why Do Investors Hold Socially Responsible Mutual Funds?," Journal of Finance, American Finance Association, vol. 72(6), pages 2505-2550, December.
    6. Eitrheim, Oyvind & Terasvirta, Timo, 1996. "Testing the adequacy of smooth transition autoregressive models," Journal of Econometrics, Elsevier, vol. 74(1), pages 59-75, September.
    7. Hany Fahmy, 2019. "Classifying and modeling nonlinearity in commodity prices using Incoterms," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 28(8), pages 1019-1046, November.
    8. Darwin Choi & Zhenyu Gao & Wenxi Jiang, 2020. "Attention to Global Warming," Review of Financial Studies, Society for Financial Studies, vol. 33(3), pages 1112-1145.
    9. Reboredo, Juan C., 2015. "Is there dependence and systemic risk between oil and renewable energy stock prices?," Energy Economics, Elsevier, vol. 48(C), pages 32-45.
    10. Pham, Linh, 2019. "Do all clean energy stocks respond homogeneously to oil price?," Energy Economics, Elsevier, vol. 81(C), pages 355-379.
    11. Managi, Shunsuke & Okimoto, Tatsuyoshi, 2013. "Does the price of oil interact with clean energy prices in the stock market?," Japan and the World Economy, Elsevier, vol. 27(C), pages 1-9.
    12. Henriques, Irene & Sadorsky, Perry, 2008. "Oil prices and the stock prices of alternative energy companies," Energy Economics, Elsevier, vol. 30(3), pages 998-1010, May.
    13. Fahmy, Hany, 2020. "Mean-variance-time: An extension of Markowitz's mean-variance portfolio theory," Journal of Economics and Business, Elsevier, vol. 109(C).
    14. Nikkinen, Jussi & Rothovius, Timo, 2019. "Energy sector uncertainty decomposition: New approach based on implied volatilities," Applied Energy, Elsevier, vol. 248(C), pages 141-148.
    15. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    16. Dutta, Anupam & Bouri, Elie & Saeed, Tareq & Vo, Xuan Vinh, 2020. "Impact of energy sector volatility on clean energy assets," Energy, Elsevier, vol. 212(C).
    17. Philipp Krueger & Zacharias Sautner & Laura T Starks, 2020. "The Importance of Climate Risks for Institutional Investors," Review of Financial Studies, Society for Financial Studies, vol. 33(3), pages 1067-1111.
    18. Sadorsky, Perry, 2012. "Correlations and volatility spillovers between oil prices and the stock prices of clean energy and technology companies," Energy Economics, Elsevier, vol. 34(1), pages 248-255.
    19. Hany Fahmy, 2014. "Modelling nonlinearities in commodity prices using smooth transition regression models with exogenous transition variables," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(4), pages 577-600, November.
    20. Ahmad, Wasim & Sadorsky, Perry & Sharma, Amit, 2018. "Optimal hedge ratios for clean energy equities," Economic Modelling, Elsevier, vol. 72(C), pages 278-295.
    21. Ferrer, Román & Shahzad, Syed Jawad Hussain & López, Raquel & Jareño, Francisco, 2018. "Time and frequency dynamics of connectedness between renewable energy stocks and crude oil prices," Energy Economics, Elsevier, vol. 76(C), pages 1-20.
    22. Kumar, Surender & Managi, Shunsuke & Matsuda, Akimi, 2012. "Stock prices of clean energy firms, oil and carbon markets: A vector autoregressive analysis," Energy Economics, Elsevier, vol. 34(1), pages 215-226.
    23. Bondia, Ripsy & Ghosh, Sajal & Kanjilal, Kakali, 2016. "International crude oil prices and the stock prices of clean energy and technology companies: Evidence from non-linear cointegration tests with unknown structural breaks," Energy, Elsevier, vol. 101(C), pages 558-565.
    24. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fahmy, Hany, 2022. "The rise in investors’ awareness of climate risks after the Paris Agreement and the clean energy-oil-technology prices nexus," Energy Economics, Elsevier, vol. 106(C).
    2. Wang, Dingqing & Liao, Hongwei & Liu, Aiguo & Li, Dongdong, 2023. "Natural resource saving effects of data factor marketization: Implications for green recovery," Resources Policy, Elsevier, vol. 85(PA).
    3. Farid, Saqib & Karim, Sitara & Naeem, Muhammad A. & Nepal, Rabindra & Jamasb, Tooraj, 2023. "Co-movement between dirty and clean energy: A time-frequency perspective," Energy Economics, Elsevier, vol. 119(C).
    4. Song, Feng & Cui, Jian & Yu, Yihua, 2022. "Dynamic volatility spillover effects between wind and solar power generations: Implications for hedging strategies and a sustainable power sector," Economic Modelling, Elsevier, vol. 116(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fahmy, Hany, 2022. "The rise in investors’ awareness of climate risks after the Paris Agreement and the clean energy-oil-technology prices nexus," Energy Economics, Elsevier, vol. 106(C).
    2. Çelik, İsmail & Sak, Ahmet Furkan & Höl, Arife Özdemir & Vergili, Gizem, 2022. "The dynamic connectedness and hedging opportunities of implied and realized volatility: Evidence from clean energy ETFs," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    3. Umar, Muhammad & Farid, Saqib & Naeem, Muhammad Abubakr, 2022. "Time-frequency connectedness among clean-energy stocks and fossil fuel markets: Comparison between financial, oil and pandemic crisis," Energy, Elsevier, vol. 240(C).
    4. Tan, Xueping & Geng, Yong & Vivian, Andrew & Wang, Xinyu, 2021. "Measuring risk spillovers between oil and clean energy stocks: Evidence from a systematic framework," Resources Policy, Elsevier, vol. 74(C).
    5. Asl, Mahdi Ghaemi & Canarella, Giorgio & Miller, Stephen M., 2021. "Dynamic asymmetric optimal portfolio allocation between energy stocks and energy commodities: Evidence from clean energy and oil and gas companies," Resources Policy, Elsevier, vol. 71(C).
    6. Yahya, Muhammad & Kanjilal, Kakali & Dutta, Anupam & Uddin, Gazi Salah & Ghosh, Sajal, 2021. "Can clean energy stock price rule oil price? New evidences from a regime-switching model at first and second moments," Energy Economics, Elsevier, vol. 95(C).
    7. Capucine Nobletz, 2021. "Return spillovers between green energy indexes and financial markets: a first sectoral approach," EconomiX Working Papers 2021-24, University of Paris Nanterre, EconomiX.
    8. Dutta, Anupam & Bouri, Elie & Rothovius, Timo & Uddin, Gazi Salah, 2023. "Climate risk and green investments: New evidence," Energy, Elsevier, vol. 265(C).
    9. Fernanda Fuentes & Rodrigo Herrera, 2020. "Dynamics of Connectedness in Clean Energy Stocks," Energies, MDPI, vol. 13(14), pages 1-19, July.
    10. Matteo Foglia & Eliana Angelini, 2020. "Volatility Connectedness between Clean Energy Firms and Crude Oil in the COVID-19 Era," Sustainability, MDPI, vol. 12(23), pages 1-22, November.
    11. Çevik, Emre & Çevik, Emrah İsmail & Dibooglu, Sel & Cergibozan, Raif & Bugan, Mehmet Fatih & Destek, Mehmet Akif, 2022. "Connectedness and risk spillovers between crude oil and clean energy stock markets," MPRA Paper 117558, University Library of Munich, Germany.
    12. Dutta, Anupam & Bouri, Elie & Saeed, Tareq & Vo, Xuan Vinh, 2020. "Impact of energy sector volatility on clean energy assets," Energy, Elsevier, vol. 212(C).
    13. Yahya, Muhammad & Ghosh, Sajal & Kanjilal, Kakali & Dutta, Anupam & Uddin, Gazi Salah, 2020. "Evaluation of cross-quantile dependence and causality between non-ferrous metals and clean energy indexes," Energy, Elsevier, vol. 202(C).
    14. Linh Pham, 2021. "How Integrated are Regional Green Equity Markets? Evidence from a Cross-Quantilogram Approach," JRFM, MDPI, vol. 14(1), pages 1-58, January.
    15. Urom, Christian & Mzoughi, Hela & Ndubuisi, Gideon & Guesmi, Khaled, 2022. "Directional predictability and time-frequency spillovers among clean energy sectors and oil price uncertainty," The Quarterly Review of Economics and Finance, Elsevier, vol. 85(C), pages 326-341.
    16. Dawar, Ishaan & Dutta, Anupam & Bouri, Elie & Saeed, Tareq, 2021. "Crude oil prices and clean energy stock indices: Lagged and asymmetric effects with quantile regression," Renewable Energy, Elsevier, vol. 163(C), pages 288-299.
    17. Ahmed, Walid M.A. & Sleem, Mohamed A.E., 2023. "Short- and long-run determinants of the price behavior of US clean energy stocks: A dynamic ARDL simulations approach," Energy Economics, Elsevier, vol. 124(C).
    18. Janda, Karel & Kristoufek, Ladislav & Zhang, Binyi, 2022. "Return and volatility spillovers between Chinese and U.S. clean energy related stocks," Energy Economics, Elsevier, vol. 108(C).
    19. Bouoiyour, Jamal & Gauthier, Marie & Bouri, Elie, 2023. "Which is leading: Renewable or brown energy assets?," Energy Economics, Elsevier, vol. 117(C).
    20. Uddin, Gazi Salah & Rahman, Md Lutfur & Hedström, Axel & Ahmed, Ali, 2019. "Cross-quantilogram-based correlation and dependence between renewable energy stock and other asset classes," Energy Economics, Elsevier, vol. 80(C), pages 743-759.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:106:y:2022:i:c:s0264999321002856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.