IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v53y2015icp15-27.html
   My bibliography  Save this article

Deforestation and optimal management

Author

Listed:
  • Piazza, Adriana
  • Roy, Santanu

Abstract

In a general discrete time model of optimal forest management where land may be diverted to alternative use and stocks of standing trees may yield flow benefits, we investigate the economic and ecological conditions under which optimal paths lead to (total) deforestation i.e., complete long term removal of forest cover. We show that if deforestation occurs from some initial state, then it must occur in finite time along every optimal path so that zero forest cover is the globally stable optimal steady state. We develop a condition that is both necessary and sufficient for deforestation. Deforestation is less likely if the immediate profitability of timber harvest, the benefits from stocks of standing forests and the timber content of trees are higher. We characterize the minimum forest cover along optimal paths (when deforestation is not optimal). We design a simple linear subsidy on standing forest biomass that can motivate a private owner (who does not take into account the external benefits from standing trees) to conserve forests.

Suggested Citation

  • Piazza, Adriana & Roy, Santanu, 2015. "Deforestation and optimal management," Journal of Economic Dynamics and Control, Elsevier, vol. 53(C), pages 15-27.
  • Handle: RePEc:eee:dyncon:v:53:y:2015:i:c:p:15-27
    DOI: 10.1016/j.jedc.2015.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188915000056
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jedc.2015.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gregory S. Amacher & Markku Ollikainen & Erkki A. Koskela, 2009. "Economics of Forest Resources," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012480, December.
    2. Tapan Mitra & Henry Y. Wan, 1985. "Some Theoretical Results on the Economics of Forestry," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 52(2), pages 263-282.
    3. Claude Henry, 1974. "Option Values in the Economics of Irreplaceable Assets," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 89-104.
    4. Salo, Seppo & Tahvonen, Olli, 2002. "On Equilibrium Cycles and Normal Forests in Optimal Harvesting of Tree Vintages," Journal of Environmental Economics and Management, Elsevier, vol. 44(1), pages 1-22, July.
    5. Clark, Colin W, 1973. "Profit Maximization and the Extinction of Animal Species," Journal of Political Economy, University of Chicago Press, vol. 81(4), pages 950-961, July-Aug..
    6. Mitra, Tapan & Wan, Henry Jr., 1986. "On the faustmann solution to the forest management problem," Journal of Economic Theory, Elsevier, vol. 40(2), pages 229-249, December.
    7. Kenneth J. Arrow & Anthony C. Fisher, 1974. "Environmental Preservation, Uncertainty, and Irreversibility," Palgrave Macmillan Books, in: Chennat Gopalakrishnan (ed.), Classic Papers in Natural Resource Economics, chapter 4, pages 76-84, Palgrave Macmillan.
    8. Olson, Lars J. & Roy, Santanu, 1996. "On Conservation of Renewable Resources with Stock-Dependent Return and Nonconcave Production," Journal of Economic Theory, Elsevier, vol. 70(1), pages 133-157, July.
    9. Olli Tahvonen, 2004. "Optimal Harvesting Of Forest Age Classes: A Survey Of Some Recent Results," Mathematical Population Studies, Taylor & Francis Journals, vol. 11(3-4), pages 205-232.
    10. Dasgupta, Swapan & Mitra, Tapan, 2010. "On Optimal Forest Management: A Bifurcation Analysis," Working Papers 10-04, Cornell University, Center for Analytic Economics.
    11. Lyon, Kenneth S., 1981. "Mining of the forest and the time path of the price of timber," Journal of Environmental Economics and Management, Elsevier, vol. 8(4), pages 330-344, December.
    12. Peter Berck, 1979. "The Economics of Timber: A Renewable Resource in the Long Run," Bell Journal of Economics, The RAND Corporation, vol. 10(2), pages 447-462, Autumn.
    13. Angelsen, Arild & Kaimowitz, David, 1999. "Rethinking the Causes of Deforestation: Lessons from Economic Models," The World Bank Research Observer, World Bank, vol. 14(1), pages 73-98, February.
    14. Bowes, Michael D. & Krutilla, John V., 1985. "Multiple use management of public forestlands," Handbook of Natural Resource and Energy Economics, in: A. V. Kneese† & J. L. Sweeney (ed.), Handbook of Natural Resource and Energy Economics, edition 1, volume 2, chapter 12, pages 531-569, Elsevier.
    15. Salo, Seppo & Tahvonen, Olli, 2003. "On the economics of forest vintages," Journal of Economic Dynamics and Control, Elsevier, vol. 27(8), pages 1411-1435, June.
    16. Wan, Henry, Jr, 1994. "Revisiting the Mitra-Wan Tree Farm," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(1), pages 193-198, February.
    17. Seppo Salo & Olli Tahvonen, 2004. "Renewable Resources with Endogenous Age Classes and Allocation of Land," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(2), pages 513-530.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tahvonen, Olli & Rautiainen, Aapo, 2017. "Economics of forest carbon storage and the additionality principle," Resource and Energy Economics, Elsevier, vol. 50(C), pages 124-134.
    2. Chenavaz, Régis Y. & Leocata, Marta & Ogonowska, Malgorzata & Torre, Dominique, 2022. "Sustainable tourism," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    3. Adriana Piazza & Santanu Roy, 2020. "Irreversibility and the economics of forest conservation," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 69(3), pages 667-711, April.
    4. Silvia Faggian & Giuseppe Freni, 2015. "A Ricardian Model of Forestry," Working Papers 2015:12, Department of Economics, University of Venice "Ca' Foscari", revised 2015.
    5. Laukkanen, Matti & Tahvonen, Olli, 2023. "Wood product differentiation in age-structured forestry," Resource and Energy Economics, Elsevier, vol. 73(C).
    6. Daniel Bouchardet & Alexandre Porsse, 2015. "An Exploratory Spatial Data Analysis for Deforestation in Brazilian Amazon," ERSA conference papers ersa15p845, European Regional Science Association.
    7. Kuusela, Olli-Pekka & Lintunen, Jussi, 2020. "Modeling market-level effects of disturbance risks in age structured forests," Forest Policy and Economics, Elsevier, vol. 118(C).
    8. Khan, M. Ali, 2016. "On a forest as a commodity and on commodification in the discipline of forestry," Forest Policy and Economics, Elsevier, vol. 72(C), pages 7-17.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, M. Ali, 2016. "On a forest as a commodity and on commodification in the discipline of forestry," Forest Policy and Economics, Elsevier, vol. 72(C), pages 7-17.
    2. Adriana Piazza & Santanu Roy, 2020. "Irreversibility and the economics of forest conservation," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 69(3), pages 667-711, April.
    3. Fabbri, Giorgio & Faggian, Silvia & Freni, Giuseppe, 2015. "On the Mitra–Wan forest management problem in continuous time," Journal of Economic Theory, Elsevier, vol. 157(C), pages 1001-1040.
    4. Lintunen, Jussi & Uusivuori, Jussi, 2014. "On The Economics of Forest Carbon: Renewable and Carbon Neutral But Not Emission Free," Climate Change and Sustainable Development 165755, Fondazione Eni Enrico Mattei (FEEM).
    5. Xabadia, Angels & Goetz, Renan U., 2010. "The optimal selective logging regime and the Faustmann formula," Journal of Forest Economics, Elsevier, vol. 16(1), pages 63-82, January.
    6. Heaps, Terry, 2015. "Convergence of optimal harvesting policies to a normal forest," Journal of Economic Dynamics and Control, Elsevier, vol. 54(C), pages 74-85.
    7. Laukkanen, Matti & Tahvonen, Olli, 2023. "Wood product differentiation in age-structured forestry," Resource and Energy Economics, Elsevier, vol. 73(C).
    8. Tahvonen, Olli, 2009. "Economics of harvesting age-structured fish populations," Journal of Environmental Economics and Management, Elsevier, vol. 58(3), pages 281-299, November.
    9. Kuusela, Olli-Pekka & Lintunen, Jussi, 2020. "Modeling market-level effects of disturbance risks in age structured forests," Forest Policy and Economics, Elsevier, vol. 118(C).
    10. Coordes, Renke, 2016. "The emergence of forest age structures as determined by uneven-aged stands and age class forests," Journal of Forest Economics, Elsevier, vol. 25(C), pages 160-179.
    11. Lintunen, Jussi & Uusivuori, Jussi, 2016. "On the economics of forests and climate change: Deriving optimal policies," Journal of Forest Economics, Elsevier, vol. 24(C), pages 130-156.
    12. Moriguchi, Kai & Ueki, Tatsuhito & Saito, Masashi, 2020. "Establishing optimal forest harvesting regulation with continuous approximation," Operations Research Perspectives, Elsevier, vol. 7(C).
    13. Salant, Stephen, 2012. "The Equilibrium Price Path of Timber in the Absence of Replanting," RFF Working Paper Series dp-12-38, Resources for the Future.
    14. Stéphane S. Couture & Marie-Josée Cros & Régis Sabbadin, 2014. "Risk preferences and optimal management of uneven-aged forests in the presence of climate change: a Markov decision process approach," Post-Print hal-02741407, HAL.
    15. Couture, Stéphane & Cros, Marie-Josée & Sabbadin, Régis, 2016. "Risk aversion and optimal management of an uneven-aged forest under risk of windthrow: A Markov decision process approach," Journal of Forest Economics, Elsevier, vol. 25(C), pages 94-114.
    16. Ali Khan, M. & Piazza, Adriana, 2012. "On the Mitra–Wan forestry model: A unified analysis," Journal of Economic Theory, Elsevier, vol. 147(1), pages 230-260.
    17. Newman, D.H., 2002. "Forestry's golden rule and the development of the optimal forest rotation literature," Journal of Forest Economics, Elsevier, vol. 8(1), pages 5-27.
    18. Terry Heaps, 2014. "Convergence of Optimal Harvesting Policies to a Normal Forest," Discussion Papers dp14-01, Department of Economics, Simon Fraser University.
    19. Adriana Piazza, 2009. "The optimal harvesting problem with a land market: a characterization of the asymptotic convergence," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 40(1), pages 113-138, July.
    20. Meilby, Henrik & Brazee, Richard J., 12. "Sustainibility and Long-term Dynamics of Forests: Methods and Metrics for Detection of Convergence and Stationarity," Scandinavian Forest Economics: Proceedings of the Biennial Meeting of the Scandinavian Society of Forest Economics, Scandinavian Society of Forest Economics, issue 40, May.

    More about this item

    Keywords

    Deforestation; Optimal forest management; Conservation; Renewable resources; Extinction;
    All these keywords.

    JEL classification:

    • Q23 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Forestry
    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy
    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:53:y:2015:i:c:p:15-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.