IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i12p3988-3999.html
   My bibliography  Save this article

A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking

Author

Listed:
  • Bermúdez, Lluís
  • Karlis, Dimitris

Abstract

Bivariate Poisson regression models for ratemaking in car insurance have been previously used. They included zero-inflated models to account for the excess of zeros and the overdispersion in the data set. These models are now revisited in order to consider alternatives. A 2-finite mixture of bivariate Poisson regression models is used to demonstrate that the overdispersion in the data requires more structure if it is to be taken into account, and that a simple zero-inflated bivariate Poisson model does not suffice. At the same time, it is shown that a finite mixture of bivariate Poisson regression models embraces zero-inflated bivariate Poisson regression models as a special case. Finally, an EM algorithm is provided in order to ensure the models’ ease-of-fit. These models are applied to an automobile insurance claims data set and it is shown that the modeling of the data set can be improved considerably.

Suggested Citation

  • Bermúdez, Lluís & Karlis, Dimitris, 2012. "A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3988-3999.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:12:p:3988-3999
    DOI: 10.1016/j.csda.2012.05.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312002150
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.05.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Peiming & Cockburn, Iain M & Puterman, Martin L, 1998. "Analysis of Patent Data--A Mixed-Poisson-Regression-Model Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(1), pages 27-41, January.
    2. Garay, Aldo M. & Hashimoto, Elizabeth M. & Ortega, Edwin M.M. & Lachos, Víctor H., 2011. "On estimation and influence diagnostics for zero-inflated negative binomial regression models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1304-1318, March.
    3. Murat K. Munkin & Pravin K. Trivedi, 1999. "Simulated maximum likelihood estimation of multivariate mixed-Poisson regression models, with application," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 29-48.
    4. Jean‐Philippe Boucher & Michel Denuit & Montserrat Guillen, 2009. "Number of Accidents or Number of Claims? An Approach with Zero‐Inflated Poisson Models for Panel Data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(4), pages 821-846, December.
    5. Bolancé, Catalina & Guillén, Montserrat & Pinquet, Jean, 2008. "On the link between credibility and frequency premium," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 209-213, October.
    6. Aristidis Nikoloulopoulos & Dimitris Karlis, 2010. "Regression in a copula model for bivariate count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1555-1568.
    7. Bolance, Catalina & Guillen, Montserrat & Pinquet, Jean, 2003. "Time-varying credibility for frequency risk models: estimation and tests for autoregressive specifications on the random effects," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 273-282, October.
    8. Chib, Siddhartha & Winkelmann, Rainer, 2001. "Markov Chain Monte Carlo Analysis of Correlated Count Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 428-435, October.
    9. Peiming Wang & Iain Cockburn & Martin L. Puterman, "undated". "A Mixed Poisson Regression Model for Analysis of Patent Data," Computing in Economics and Finance 1996 _049, Society for Computational Economics.
    10. Tom Brijs & Dimitris Karlis & Gilbert Swinnen & Koen Vanhoof & Geert Wets & Puneet Manchanda, 2004. "A multivariate Poisson mixture model for marketing applications," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 58(3), pages 322-348, August.
    11. Natacha Brouhns & Montserrat Guillén & Michel Denuit & Jean Pinquet, 2003. "Bonus‐Malus Scales in Segmented Tariffs With Stochastic Migration Between Segments," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 70(4), pages 577-599, December.
    12. Rainer Winkelmann, 2008. "Econometric Analysis of Count Data," Springer Books, Springer, edition 0, number 978-3-540-78389-3, December.
    13. Jean Philippe Boucher & Miguel Santolino, 2010. "Discrete distributions when modeling the disability severity score of motor victims," IREA Working Papers 201005, University of Barcelona, Research Institute of Applied Economics, revised Feb 2010.
    14. Gurmu, Shiferaw & Elder, John, 2000. "Generalized bivariate count data regression models," Economics Letters, Elsevier, vol. 68(1), pages 31-36, July.
    15. Gurmu, Shiferaw & Elder, John, 2008. "A bivariate zero-inflated count data regression model with unrestricted correlation," Economics Letters, Elsevier, vol. 100(2), pages 245-248, August.
    16. Wang, Peiming, 2003. "A bivariate zero-inflated negative binomial regression model for count data with excess zeros," Economics Letters, Elsevier, vol. 78(3), pages 373-378, March.
    17. Grun, Bettina & Leisch, Friedrich, 2007. "Fitting finite mixtures of generalized linear regressions in R," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5247-5252, July.
    18. Boucher, Jean-Philippe & Denuit, Michel, 2008. "Credibility premiums for the zero-inflated Poisson model and new hunger for bonus interpretation," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 727-735, April.
    19. Jean-Philippe Boucher & Michel Denuit & Montserrat Guillén, 2007. "Risk Classification for Claim Counts," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(4), pages 110-131.
    20. Bermúdez, Lluís & Karlis, Dimitris, 2011. "Bayesian multivariate Poisson models for insurance ratemaking," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 226-236, March.
    21. S. Kocherlakota, 1988. "On the compounded bivariate Poisson distribution: A unified treatment," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 40(1), pages 61-76, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lluís Bermúdez & Dimitris Karlis, 2021. "Multivariate INAR(1) Regression Models Based on the Sarmanov Distribution," Mathematics, MDPI, vol. 9(5), pages 1-13, March.
    2. Ni, Linglin & Wang, Xiaokun, 2021. "Load factors of less-than-truckload delivery tours: An analysis with operation data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    3. Spark C. Tseung & Ian Weng Chan & Tsz Chai Fung & Andrei L. Badescu & X. Sheldon Lin, 2022. "A Posteriori Risk Classification and Ratemaking with Random Effects in the Mixture-of-Experts Model," Papers 2209.15212, arXiv.org.
    4. Delong, Łukasz & Lindholm, Mathias & Wüthrich, Mario V., 2021. "Gamma Mixture Density Networks and their application to modelling insurance claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 240-261.
    5. Zezhun Chen & Angelos Dassios & George Tzougas, 2023. "Multivariate mixed Poisson Generalized Inverse Gaussian INAR(1) regression," Computational Statistics, Springer, vol. 38(2), pages 955-977, June.
    6. Tatjana Miljkovic & Daniel Fernández, 2018. "On Two Mixture-Based Clustering Approaches Used in Modeling an Insurance Portfolio," Risks, MDPI, vol. 6(2), pages 1-18, May.
    7. Zezhun Chen & Angelos Dassios & George Tzougas, 2022. "EM Estimation for the Bivariate Mixed Exponential Regression Model," Risks, MDPI, vol. 10(5), pages 1-13, May.
    8. Tzougas, George & Pignatelli di Cerchiara, Alice, 2021. "The multivariate mixed Negative Binomial regression model with an application to insurance a posteriori ratemaking," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 602-625.
    9. Počuča, Nikola & Jevtić, Petar & McNicholas, Paul D. & Miljkovic, Tatjana, 2020. "Modeling frequency and severity of claims with the zero-inflated generalized cluster-weighted models," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 79-93.
    10. Yang Lu, 2018. "Dynamic Frailty Count Process in Insurance: A Unified Framework for Estimation, Pricing, and Forecasting," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 85(4), pages 1083-1102, December.
    11. Lluís Bermúdez & Dimitris Karlis & Isabel Morillo, 2020. "Modelling Unobserved Heterogeneity in Claim Counts Using Finite Mixture Models," Risks, MDPI, vol. 8(1), pages 1-13, January.
    12. Pechon, Florian & Denuit, Michel & Trufin, Julien, 2018. "Multivariate Modelling of Multiple Guarantees in Motor Insurance of a Household," LIDAM Discussion Papers ISBA 2018019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. George Tzougas & Despoina Makariou, 2022. "The multivariate Poisson‐Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 25(4), pages 401-417, December.
    14. Bermúdez, Lluís & Guillén, Montserrat & Karlis, Dimitris, 2018. "Allowing for time and cross dependence assumptions between claim counts in ratemaking models," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 161-169.
    15. Su Pei-Fang & Mau Yu-Lin & Li Chung-I & Guo Yan & Liu Qi & Shyr Yu & Boice John D., 2017. "Bivariate Poisson models with varying offsets: an application to the paired mitochondrial DNA dataset," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(1), pages 47-58, March.
    16. Tzougas, George & Makariou, Despoina, 2022. "The multivariate Poisson-Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," LSE Research Online Documents on Economics 117197, London School of Economics and Political Science, LSE Library.
    17. Lluís Bermúdez & Dimitris Karlis, 2022. "Copula-based bivariate finite mixture regression models with an application for insurance claim count data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1082-1099, December.
    18. Gning, Lucien & Diagne, M.L. & Tchuenche, J.M., 2023. "Hierarchical generalized linear models, correlation and a posteriori ratemaking," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lluís Bermúdez & Dimitris Karlis & Isabel Morillo, 2020. "Modelling Unobserved Heterogeneity in Claim Counts Using Finite Mixture Models," Risks, MDPI, vol. 8(1), pages 1-13, January.
    2. Tzougas, George & Pignatelli di Cerchiara, Alice, 2021. "The multivariate mixed Negative Binomial regression model with an application to insurance a posteriori ratemaking," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 602-625.
    3. Tzougas, George & Makariou, Despoina, 2022. "The multivariate Poisson-Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," LSE Research Online Documents on Economics 117197, London School of Economics and Political Science, LSE Library.
    4. George Tzougas & Despoina Makariou, 2022. "The multivariate Poisson‐Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 25(4), pages 401-417, December.
    5. Payandeh Najafabadi Amir T. & MohammadPour Saeed, 2018. "A k-Inflated Negative Binomial Mixture Regression Model: Application to Rate–Making Systems," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 12(2), pages 1-31, July.
    6. Bermúdez, Lluís & Karlis, Dimitris, 2011. "Bayesian multivariate Poisson models for insurance ratemaking," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 226-236, March.
    7. Borislava Mihaylova & Andrew Briggs & Anthony O'Hagan & Simon G. Thompson, 2011. "Review of statistical methods for analysing healthcare resources and costs," Health Economics, John Wiley & Sons, Ltd., vol. 20(8), pages 897-916, August.
    8. Zhao, Xiaobing & Zhou, Xian, 2012. "Copula models for insurance claim numbers with excess zeros and time-dependence," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 191-199.
    9. Bermúdez i Morata, Lluís, 2009. "A priori ratemaking using bivariate Poisson regression models," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 135-141, February.
    10. Greene, William, 2007. "Functional Form and Heterogeneity in Models for Count Data," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(2), pages 113-218, August.
    11. Ramon Alemany & Catalina Bolancé & Roberto Rodrigo & Raluca Vernic, 2020. "Bivariate Mixed Poisson and Normal Generalised Linear Models with Sarmanov Dependence—An Application to Model Claim Frequency and Optimal Transformed Average Severity," Mathematics, MDPI, vol. 9(1), pages 1-18, December.
    12. Atella, Vincenzo & Deb, Partha, 2008. "Are primary care physicians, public and private sector specialists substitutes or complements? Evidence from a simultaneous equations model for count data," Journal of Health Economics, Elsevier, vol. 27(3), pages 770-785, May.
    13. Marco Alfò & Giovanni Trovato, 2004. "Semiparametric Mixture Models for Multivariate Count Data, with Application," CEIS Research Paper 51, Tor Vergata University, CEIS.
    14. William Greene, 2007. "Correlation in Bivariate Poisson Regression Model," Working Papers 07-14, New York University, Leonard N. Stern School of Business, Department of Economics.
    15. Herriges, Joseph A. & Phaneuf, Daniel J. & Tobias, Justin L., 2008. "Estimating demand systems when outcomes are correlated counts," Journal of Econometrics, Elsevier, vol. 147(2), pages 282-298, December.
    16. Eduardo Fé & Richard Hofler, 2013. "Count data stochastic frontier models, with an application to the patents–R&D relationship," Journal of Productivity Analysis, Springer, vol. 39(3), pages 271-284, June.
    17. Dimitris Karlis & Purushottam Papatla & Sudipt Roy, 2016. "Finite mixtures of censored Poisson regression models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(2), pages 100-122, May.
    18. Hellström, Jörgen & Nordström, Jonas, 2012. "Demand and welfare effects in recreational travel models: Accounting for substitution between number of trips and days to stay," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 446-456.
    19. Chen, Zezhun Chen & Dassios, Angelos & Tzougas, George, 2023. "EM estimation for bivariate mixed poisson INAR(1) claim count regression models with correlated random effects," LSE Research Online Documents on Economics 118826, London School of Economics and Political Science, LSE Library.
    20. Greene, William, 2008. "Functional forms for the negative binomial model for count data," Economics Letters, Elsevier, vol. 99(3), pages 585-590, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:12:p:3988-3999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.