IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v46y2012i3p446-456.html
   My bibliography  Save this article

Demand and welfare effects in recreational travel models: Accounting for substitution between number of trips and days to stay

Author

Listed:
  • Hellström, Jörgen
  • Nordström, Jonas

Abstract

In this paper we present a non-linear demand system for households’ joint choice of number of trips and days to spend at a destination. The approach, which facilitates welfare analysis of exogenous policy and price changes, is used empirically to study the effects of an increased CO2 tax. In particular, we focus on the effect of including substitution between households choice of the number of trips and days to spend at a destination in the welfare analysis. The analysis reveals that the equivalent variation (EV) measure, for the count data demand system, can be seen as an upper bound for the households welfare loss. Approximating the welfare loss by the change in consumer surplus, accounting for the positive effect from longer stays, imposes a lower bound on the households welfare loss. The difference in the estimated loss measures, from the considered CO2 tax reform, is about 20%. This emphasizes the importance of accounting for substitutions toward longer stays in travel demand policy evaluations.

Suggested Citation

  • Hellström, Jörgen & Nordström, Jonas, 2012. "Demand and welfare effects in recreational travel models: Accounting for substitution between number of trips and days to stay," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 446-456.
  • Handle: RePEc:eee:transa:v:46:y:2012:i:3:p:446-456
    DOI: 10.1016/j.tra.2011.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856411001704
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2011.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rainer Winkelmann, 2004. "Health care reform and the number of doctor visits-an econometric analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(4), pages 455-472.
    2. Murat K. Munkin & Pravin K. Trivedi, 1999. "Simulated maximum likelihood estimation of multivariate mixed-Poisson regression models, with application," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 29-48.
    3. Browning, Martin & Meghir, Costas, 1991. "The Effects of Male and Female Labor Supply on Commodity Demands," Econometrica, Econometric Society, vol. 59(4), pages 925-951, July.
    4. Melenberg, Bertrand & van Soest, Arthur, 1996. "Parametric and Semi-parametric Modelling of Vacation Expenditures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 59-76, Jan.-Feb..
    5. Falvey, Rodney E & Gemmell, Norman, 1996. "Are Services Income-Elastic? Some New Evidence," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 42(3), pages 257-269, September.
    6. Ozuna, Teofilo, Jr & Gomez, Irma Adriana, 1994. "Estimating a System of Recreation Demand Functions Using a Seemingly Unrelated Poisson Regression Approach," The Review of Economics and Statistics, MIT Press, vol. 76(2), pages 356-360, May.
    7. Jeffrey T. LaFrance & W. Michael Hanemann, 1989. "The Dual Structure of Incomplete Demand Systems," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(2), pages 262-274.
    8. Epstein, L, 1975. "A Disaggregate Analysis of Consumer Choice under Uncertainty," Econometrica, Econometric Society, vol. 43(5-6), pages 877-892, Sept.-Nov.
    9. W. Douglass Shaw & Peter Feather, 1999. "Possibilities for Including the Opportunity Cost of Time in Recreation Demand Systems," Land Economics, University of Wisconsin Press, vol. 75(4), pages 592-602.
    10. Kenneth E. Train, 1998. "Recreation Demand Models with Taste Differences over People," Land Economics, University of Wisconsin Press, vol. 74(2), pages 230-239.
    11. Brannlund, Runar & Nordstrom, Jonas, 2004. "Carbon tax simulations using a household demand model," European Economic Review, Elsevier, vol. 48(1), pages 211-233, February.
    12. Jeffrey Englin & Peter Boxall & David Watson, 1998. "Modeling Recreation Demand in a Poisson System of Equations: An Analysis of the Impact of International Exchange Rates," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(2), pages 255-263.
    13. Douglas M. Larson, 1993. "Joint Recreation Choices and Implied Values of Time," Land Economics, University of Wisconsin Press, vol. 69(3), pages 270-286.
    14. Morey, Edward R. & Shaw, W. Douglass & Rowe, Robert D., 1991. "A discrete-choice model of recreational participation, site choice, and activity valuation when complete trip data are not available," Journal of Environmental Economics and Management, Elsevier, vol. 20(2), pages 181-201, March.
    15. Englin, Jeffrey & Shonkwiler, J S, 1995. "Estimating Social Welfare Using Count Data Models: An Application to Long-Run Recreation Demand under Conditions of Endogenous Stratification and Truncation," The Review of Economics and Statistics, MIT Press, vol. 77(1), pages 104-112, February.
    16. Brannlund, Runar & Ghalwash, Tarek & Nordstrom, Jonas, 2007. "Increased energy efficiency and the rebound effect: Effects on consumption and emissions," Energy Economics, Elsevier, vol. 29(1), pages 1-17, January.
    17. Gurmu, Shiferaw & Trivedi, Pravin K, 1996. "Excess Zeros in Count Models for Recreational Trips," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 469-477, October.
    18. K. E. McConnell, 1992. "On-Site Time in the Demand for Recreation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 74(4), pages 918-925.
    19. Larry G. Epstein, 1982. "Integrability of Incomplete Systems of Demand Functions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 49(3), pages 411-425.
    20. Chib, Siddhartha & Winkelmann, Rainer, 2001. "Markov Chain Monte Carlo Analysis of Correlated Count Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 428-435, October.
    21. Berman, Matthew D. & Kim, Hong Jin, 1999. "Endogenous On-Site Time In The Recreation Demand Model," 1999 Annual meeting, August 8-11, Nashville, TN 21616, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    22. J. R. Hicks, 1942. "Consumers' Surplus and Index-Numbers," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 9(2), pages 126-137.
    23. Hilger, James & Englin, Jeffrey, 2009. "Utility theoretic semi-logarithmic incomplete demand systems in a natural experiment: Forest fire impacts on recreational values and use," Resource and Energy Economics, Elsevier, vol. 31(4), pages 287-298, November.
    24. Matthew D. Berman & Hong Jin Kim, 1999. "Endogenous On-Site Time in the Recreation Demand Model," Land Economics, University of Wisconsin Press, vol. 75(4), pages 603-619.
    25. Wang, Peiming, 2003. "A bivariate zero-inflated negative binomial regression model for count data with excess zeros," Economics Letters, Elsevier, vol. 78(3), pages 373-378, March.
    26. Jeffrey Englin & Thomas Holmes & Rebecca Niell, 2006. "Alternative Models of Recreational Off-Highway Vehicle Site Demand," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 35(4), pages 327-338, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hellström, Jörgen & Nordström, Jonas, 2005. "Demand and Welfare Effects in Recreational Travel Models: A Bivariate Count Data Approach," Umeå Economic Studies 648, Umeå University, Department of Economics.
    2. Bowker, James Michael & Starbuck, C. Meghan & English, Donald B.K. & Bergstrom, John C. & Rosenberger, Randall S. & McCollum, Daniel W., 2009. "Estimating the Net Economic Value of National Forest Recreation: An Application of the National Visitor Use Monitoring Database," Faculty Series 59603, University of Georgia, Department of Agricultural and Applied Economics.
    3. Herriges, Joseph A. & Phaneuf, Daniel J. & Tobias, Justin L., 2008. "Estimating demand systems when outcomes are correlated counts," Journal of Econometrics, Elsevier, vol. 147(2), pages 282-298, December.
    4. Phaneuf, Daniel J. & Smith, V. Kerry, 2006. "Recreation Demand Models," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 2, chapter 15, pages 671-761, Elsevier.
    5. Jörgen Hellström & Jonas Nordström, 2008. "A count data model with endogenous household specific censoring: the number of nights to stay," Empirical Economics, Springer, vol. 35(1), pages 179-192, August.
    6. Isabel Mendes & Isabel Proença, 2009. "Measuring the Social Recreation Per-Day Net Benefit of Wildlife Amenities of a National Park: A Count-Data Travel Cost Approach," Working Papers Department of Economics 2009/35, ISEG - Lisbon School of Economics and Management, Department of Economics, Universidade de Lisboa.
    7. Jörgen Hellström, 2006. "A bivariate count data model for household tourism demand," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 213-226, March.
    8. Hilger, James & Englin, Jeffrey, 2009. "Utility theoretic semi-logarithmic incomplete demand systems in a natural experiment: Forest fire impacts on recreational values and use," Resource and Energy Economics, Elsevier, vol. 31(4), pages 287-298, November.
    9. Kono, Tatsuhito & Yoshida, Jun, 2020. "Travel Cost Method Considering Trip-day Counts as Integers," MPRA Paper 99244, University Library of Munich, Germany.
    10. Xie, Lusi & Adamowicz, Wiktor & Lloyd-Smith, Patrick, 2023. "Spatial and temporal responses to incentives: An application to wildlife disease management," Journal of Environmental Economics and Management, Elsevier, vol. 117(C).
    11. von Haefen, Roger H., 2010. "Incomplete Demand Systems, Corner Solutions, and Welfare Measurement," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 39(1), pages 1-15, February.
    12. Borislava Mihaylova & Andrew Briggs & Anthony O'Hagan & Simon G. Thompson, 2011. "Review of statistical methods for analysing healthcare resources and costs," Health Economics, John Wiley & Sons, Ltd., vol. 20(8), pages 897-916, August.
    13. Danielle Hagerty & Klaus Moeltner, 2005. "Specification of Driving Costs in Models of Recreation Demand," Land Economics, University of Wisconsin Press, vol. 81(1).
    14. Moeltner, Klaus, 2003. "Addressing aggregation bias in zonal recreation models," Journal of Environmental Economics and Management, Elsevier, vol. 45(1), pages 128-144, January.
    15. Jörgen Hellström, 2006. "A bivariate count data model for household tourism demand," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 213-226.
    16. Hynes, Stephen & Greene, William, 2012. "Panel Travel Cost Count Data Models for On-Site Samples that Incorporate Unobserved Heterogeneity with Respect to the Impact of the Explanatory Variables," Working Papers 148834, National University of Ireland, Galway, Socio-Economic Marine Research Unit.
    17. Stephen Hynes & William Greene, 2016. "Preference Heterogeneity in Contingent Behaviour Travel Cost Models with On-site Samples: A Random Parameter vs. a Latent Class Approach," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(2), pages 348-367, June.
    18. Baerenklau, Kenneth A. & González-Cabán, Armando & Paez, Catrina & Chavez, Edgar, 2010. "Spatial allocation of forest recreation value," Journal of Forest Economics, Elsevier, vol. 16(2), pages 113-126, April.
    19. Bengochea, A., 2003. "Valoración del uso recreativo de un espacio natural," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 21, pages 321-338, Agosto.
    20. Bermúdez, Lluís & Karlis, Dimitris, 2012. "A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3988-3999.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:46:y:2012:i:3:p:446-456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.