IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v114y2017icp38-46.html
   My bibliography  Save this article

Fast smoothing in switching approximations of non-linear and non-Gaussian models

Author

Listed:
  • Gorynin, Ivan
  • Derrode, Stéphane
  • Monfrini, Emmanuel
  • Pieczynski, Wojciech

Abstract

Statistical smoothing in general non-linear non-Gaussian systems is a challenging problem. A new smoothing method based on approximating the original system by a recent switching model has been introduced. Such switching model allows fast and optimal smoothing. The new algorithm is validated through an application on stochastic volatility and dynamic beta models. Simulation experiments indicate its remarkable performances and low processing cost. In practice, the proposed approach can overcome the limitations of particle smoothing methods and may apply where their usage is discarded.

Suggested Citation

  • Gorynin, Ivan & Derrode, Stéphane & Monfrini, Emmanuel & Pieczynski, Wojciech, 2017. "Fast smoothing in switching approximations of non-linear and non-Gaussian models," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 38-46.
  • Handle: RePEc:eee:csdana:v:114:y:2017:i:c:p:38-46
    DOI: 10.1016/j.csda.2017.04.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947317300804
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2017.04.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yun Bao & Carl Chiarella & Boda Kang, 2012. "Particle Filters for Markov Switching Stochastic Volatility Models," Research Paper Series 299, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    3. Takahashi, Makoto & Omori, Yasuhiro & Watanabe, Toshiaki, 2009. "Estimating stochastic volatility models using daily returns and realized volatility simultaneously," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2404-2426, April.
    4. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    5. Mark Briers & Arnaud Doucet & Simon Maskell, 2010. "Smoothing algorithms for state–space models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 61-89, February.
    6. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    7. Omori, Yasuhiro & Watanabe, Toshiaki, 2008. "Block sampler and posterior mode estimation for asymmetric stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2892-2910, February.
    8. Hedibert F. Lopes & Ruey S. Tsay, 2011. "Particle filters and Bayesian inference in financial econometrics," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(1), pages 168-209, January.
    9. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-417, October.
    10. Derrode, Stéphane & Pieczynski, Wojciech, 2013. "Unsupervised data classification using pairwise Markov chains with automatic copulas selection," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 81-98.
    11. Bjørn Eraker, 2004. "Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices," Journal of Finance, American Finance Association, vol. 59(3), pages 1367-1404, June.
    12. So, Mike K P & Lam, K & Li, W K, 1998. "A Stochastic Volatility Model with Markov Switching," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 244-253, April.
    13. Raúl Susmel & Madhu Kalimipalli, 2001. "Regime-Switching Stochastic Volatility and Short-Term Interest Rates," CEMA Working Papers: Serie Documentos de Trabajo. 197, Universidad del CEMA.
    14. da-Silva, C.Q. & Migon, H.S. & Correia, L.T., 2011. "Dynamic Bayesian beta models," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2074-2089, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trojan, Sebastian, 2013. "Regime Switching Stochastic Volatility with Skew, Fat Tails and Leverage using Returns and Realized Volatility Contemporaneously," Economics Working Paper Series 1341, University of St. Gallen, School of Economics and Political Science, revised Aug 2014.
    2. António A. F. Santos, 2015. "On the Forecasting of Financial Volatility Using Ultra-High Frequency Data," GEMF Working Papers 2015-17, GEMF, Faculty of Economics, University of Coimbra.
    3. Virbickaite, Audrone & Lopes, Hedibert F. & Ausín Olivera, María Concepción & Galeano San Miguel, Pedro, 2014. "Particle learning for Bayesian non-parametric Markov Switching Stochastic Volatility model," DES - Working Papers. Statistics and Econometrics. WS ws142819, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Cathy Chen & Feng-Chi Liu & Mike So, 2013. "Threshold variable selection of asymmetric stochastic volatility models," Computational Statistics, Springer, vol. 28(6), pages 2415-2447, December.
    5. Virbickaitė, Audronė & Ausín, M. Concepción & Galeano, Pedro, 2020. "Copula stochastic volatility in oil returns: Approximate Bayesian computation with volatility prediction," Energy Economics, Elsevier, vol. 92(C).
    6. Yun, Jaeho, 2011. "The role of time-varying jump risk premia in pricing stock index options," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 833-846.
    7. Worapree Maneesoonthorn & Gael M Martin & Catherine S Forbes, 2018. "Dynamic price jumps: The performance of high frequency tests and measures, and the robustness of inference," Monash Econometrics and Business Statistics Working Papers 17/18, Monash University, Department of Econometrics and Business Statistics.
    8. Juan Hoyo & Guillermo Llorente & Carlos Rivero, 2020. "A Testing Procedure for Constant Parameters in Stochastic Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 163-186, June.
    9. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    10. Patricia Lengua Lafosse & Cristian Bayes & Gabriel Rodríguez, 2015. "A Stochastic Volatility Model with GH Skew Student’s t-Distribution: Application to Latin-American Stock Returns," Documentos de Trabajo / Working Papers 2015-405, Departamento de Economía - Pontificia Universidad Católica del Perú.
    11. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    12. Eraker, Bjørn & Wu, Yue, 2017. "Explaining the negative returns to volatility claims: An equilibrium approach," Journal of Financial Economics, Elsevier, vol. 125(1), pages 72-98.
    13. Abanto-Valle, C.A. & Bandyopadhyay, D. & Lachos, V.H. & Enriquez, I., 2010. "Robust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2883-2898, December.
    14. Du, Xiaodong & Yu, Cindy L. & Hayes, Dermot J., 2011. "Speculation and volatility spillover in the crude oil and agricultural commodity markets: A Bayesian analysis," Energy Economics, Elsevier, vol. 33(3), pages 497-503, May.
    15. Carlos A. Abanto‐Valle & Helio S. Migon & Hedibert F. Lopes, 2010. "Bayesian modeling of financial returns: A relationship between volatility and trading volume," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(2), pages 172-193, March.
    16. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    17. Bandi, F.M. & Renò, R., 2016. "Price and volatility co-jumps," Journal of Financial Economics, Elsevier, vol. 119(1), pages 107-146.
    18. Chris Brooks & Marcel Prokopczuk, 2013. "The dynamics of commodity prices," Quantitative Finance, Taylor & Francis Journals, vol. 13(4), pages 527-542, March.
    19. Wang, Joanna J.J. & Chan, Jennifer S.K. & Choy, S.T. Boris, 2011. "Stochastic volatility models with leverage and heavy-tailed distributions: A Bayesian approach using scale mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 852-862, January.
    20. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:114:y:2017:i:c:p:38-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.