IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v75y2003i3-4p183-192.html
   My bibliography  Save this article

A utility-eye view of the CO2 compliance-decision process in the European power-sector

Author

Listed:
  • Söderholm, Patrik
  • Strömberg, Lars

Abstract

The purpose of this paper is to provide a utility eye-view of the European power-sector's CO2-compliance decision process under a tradable emissions scheme. The cost analysis indicates that, in the medium term, many utilities are likely to consider options based on traditional power technologies such as converting existing coal-fired capacity to burn gas, extending the lives of nuclear capacity, and replacing old coal-fired plants with more efficient gas- or even coal-fired units. The long-term economic potential of future options is highly uncertain, and utilities are likely to respond to this by maintaining flexibility in fuel choices and avoid large investments that lock them into a specific compliance method before more efficient and cleaner technologies have crystallized. Given the multitude of possible CO2-mitigation options, there is a strong case for emissions trading and for refraining from policies that build on mandatory fuel-requirements, higher rates of capital stock turnover and technology standards.

Suggested Citation

  • Söderholm, Patrik & Strömberg, Lars, 2003. "A utility-eye view of the CO2 compliance-decision process in the European power-sector," Applied Energy, Elsevier, vol. 75(3-4), pages 183-192, July.
  • Handle: RePEc:eee:appene:v:75:y:2003:i:3-4:p:183-192
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(03)00031-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McVeigh, James & Burtraw, Dallas & Darmstadter, Joel & Palmer, Karen L., 1999. "Winner, Loser, or Innocent Victim? Has Renewable Energy Performed As Expected?," Discussion Papers 10627, Resources for the Future.
    2. Kaslow, Thomas W. & Pindyck, Robert S., 1994. "Valuing flexibility in utility planning," The Electricity Journal, Elsevier, vol. 7(2), pages 60-65, March.
    3. Islas, Jorge, 1997. "Getting round the lock-in in electricity generating systems: the example of the gas turbine," Research Policy, Elsevier, vol. 26(1), pages 49-66, March.
    4. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    5. Denny Ellerman, A., 1996. "The competition between coal and natural gas the importance of sunk costs," Resources Policy, Elsevier, vol. 22(1-2), pages 33-42.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rong, Aiying & Lahdelma, Risto, 2007. "CO2 emissions trading planning in combined heat and power production via multi-period stochastic optimization," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1874-1895, February.
    2. Pettersson, Fredrik & Söderholm, Patrik, 2009. "The diffusion of renewable electricity in the presence of climate policy and technology learning: The case of Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2031-2040, October.
    3. Lin, Boqiang & Chen, Yufang, 2019. "Impacts of policies on innovation in wind power technologies in China," Applied Energy, Elsevier, vol. 247(C), pages 682-691.
    4. Berglund, Christer & Soderholm, Patrik, 2006. "Modeling technical change in energy system analysis: analyzing the introduction of learning-by-doing in bottom-up energy models," Energy Policy, Elsevier, vol. 34(12), pages 1344-1356, August.
    5. Lindman, Åsa & Söderholm, Patrik, 2016. "Wind energy and green economy in Europe: Measuring policy-induced innovation using patent data," Applied Energy, Elsevier, vol. 179(C), pages 1351-1359.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berry, David, 2002. "The market for tradable renewable energy credits," Ecological Economics, Elsevier, vol. 42(3), pages 369-379, September.
    2. Kumbaroglu, Gürkan & Madlener, Reinhard & Demirel, Mustafa, 2008. "A real options evaluation model for the diffusion prospects of new renewable power generation technologies," Energy Economics, Elsevier, vol. 30(4), pages 1882-1908, July.
    3. Berglund, Christer & Soderholm, Patrik, 2006. "Modeling technical change in energy system analysis: analyzing the introduction of learning-by-doing in bottom-up energy models," Energy Policy, Elsevier, vol. 34(12), pages 1344-1356, August.
    4. Pettersson, Fredrik & Söderholm, Patrik, 2009. "The diffusion of renewable electricity in the presence of climate policy and technology learning: The case of Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2031-2040, October.
    5. Dahlgren, Eric & Leung, Tim, 2015. "An optimal multiple stopping approach to infrastructure investment decisions," Journal of Economic Dynamics and Control, Elsevier, vol. 53(C), pages 251-267.
    6. Siddiqui, Afzal S. & Marnay, Chris & Wiser, Ryan H., 2007. "Real options valuation of US federal renewable energy research, development, demonstration, and deployment," Energy Policy, Elsevier, vol. 35(1), pages 265-279, January.
    7. Ben Abdallah, Skander & Lasserre, Pierre, 2016. "Asset retirement with infinitely repeated alternative replacements: Harvest age and species choice in forestry," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 144-164.
    8. Oscar Gutiérrez & Francisco Ruiz-Aliseda, 2011. "Real options with unknown-date events," Annals of Finance, Springer, vol. 7(2), pages 171-198, May.
    9. Timothy Erickson & Toni M. Whited, 2000. "Measurement Error and the Relationship between Investment and q," Journal of Political Economy, University of Chicago Press, vol. 108(5), pages 1027-1057, October.
    10. Arve, Malin & Zwart, Gijsbert, 2023. "Optimal procurement and investment in new technologies under uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 147(C).
    11. Shively, Gerald E., 2001. "Price thresholds, price volatility, and the private costs of investment in a developing country grain market," Economic Modelling, Elsevier, vol. 18(3), pages 399-414, August.
    12. Marks, Phillipa & Marks, Brian, 2007. "Spectrum Allocation, Spectrum Commons and Public Goods: the Role of the Market," MPRA Paper 6785, University Library of Munich, Germany.
    13. Stern, Nicholas, 2018. "Public economics as if time matters: Climate change and the dynamics of policy," Journal of Public Economics, Elsevier, vol. 162(C), pages 4-17.
    14. Krause, M.U., 2002. "Inter-Industry Wage Differentials and Job Flows," Discussion Paper 2002-3, Tilburg University, Center for Economic Research.
    15. Wong, Kit Pong & Yi, Long, 2013. "Irreversibility, mean reversion, and investment timing," Economic Modelling, Elsevier, vol. 30(C), pages 770-775.
    16. Pierre‐Richard Agénor, 2004. "Macroeconomic Adjustment and the Poor: Analytical Issues and Cross‐Country Evidence," Journal of Economic Surveys, Wiley Blackwell, vol. 18(3), pages 351-408, July.
    17. Atal, Vidya & Bar, Talia & Gordon, Sidartha, 2016. "Project selection: Commitment and competition," Games and Economic Behavior, Elsevier, vol. 96(C), pages 30-48.
    18. Yonggu Kim & Keeyoung Shin & Joseph Ahn & Eul-Bum Lee, 2017. "Probabilistic Cash Flow-Based Optimal Investment Timing Using Two-Color Rainbow Options Valuation for Economic Sustainability Appraisement," Sustainability, MDPI, vol. 9(10), pages 1-16, October.
    19. Bergendahl, Goran, 2005. "Models for investment in electronic commerce--financial perspectives with empirical evidence," Omega, Elsevier, vol. 33(4), pages 363-376, August.
    20. Prelipcean, Gabriela & Boscoianu, Mircea, 2019. "Aspect Regarding the Design of Active Strategies for Venture Capital Financing – the Flexible Adjustment for Romania as a Frontier Capital Market," Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference (2019), Rovinj, Croatia, in: Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference, Rovinj, Croatia, 12-14 September 2019, pages 187-196, IRENET - Society for Advancing Innovation and Research in Economy, Zagreb.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:75:y:2003:i:3-4:p:183-192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.