IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v356y2024ics0306261923017968.html
   My bibliography  Save this article

A bi-level multi-objective optimization model for inter-provincial carbon emissions transfer tax on electricity production

Author

Listed:
  • Zeng, Lijun
  • Guo, Lingyi
  • Jiang, Liwen

Abstract

Low-carbon electricity development is crucial for achieving China's carbon peaking and carbon neutrality goals. The current carbon reduction territorial management model (CRTMM) can only bring short-term carbon reduction and is not enough to motivate provinces to further reduce carbon. However, few studies focus on the inter-provincial coordinated electricity carbon reduction. To overcome the shortcomings of the CRTMM and fill the research gap, this study creatively presents an original bi-level multi-objective inter-provincial carbon emissions transfer tax model (CETTM) on electricity generation in China, where the central government is the upper-level decision maker (leader) and provincial governments are the lower-level decision makers (followers). As the leader, the central government pursues overall maximum economic benefit and minimum pollutant emissions, and as the followers, provincial governments endeavor to maximize internal economic benefits. To ensure the scientificity and accuracy of the calculation results, an improved NSGA-II algorithm is designed to solve the model. Data from Anhui, Qinghai, Heilongjiang, and Jiangsu provinces are then used for empirical analysis to validate the model. The findings demonstrate that the CETTM is superior to the CRTMM in reducing carbon emissions, lowering pollutant emissions and improving economic benefits. The CETTM reduces CO2 emissions by 20.04 × 106 tons, lowers pollutant emissions by 10.65 × 104 tons, and increases benefits by 101.99 × 108 CNY in contrast to the CRTMM. The robustness of the model is verified using a sensitivity analysis. Finally, this study proposes policy recommendations for the CETTM implementation.

Suggested Citation

  • Zeng, Lijun & Guo, Lingyi & Jiang, Liwen, 2024. "A bi-level multi-objective optimization model for inter-provincial carbon emissions transfer tax on electricity production," Applied Energy, Elsevier, vol. 356(C).
  • Handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017968
    DOI: 10.1016/j.apenergy.2023.122432
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923017968
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122432?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florens Flues & Benjamin Johannes Lutz, 2015. "Competitiveness Impacts of the German Electricity Tax," OECD Environment Working Papers 88, OECD Publishing.
    2. Jascha Lehmann & Dim Coumou & Katja Frieler, 2015. "Erratum to: increased record-breaking precipitation events under global warming," Climatic Change, Springer, vol. 132(4), pages 517-518, October.
    3. Jascha Lehmann & Dim Coumou & Katja Frieler, 2015. "Increased record-breaking precipitation events under global warming," Climatic Change, Springer, vol. 132(4), pages 501-515, October.
    4. H. Damon Matthews & Nathan P. Gillett & Peter A. Stott & Kirsten Zickfeld, 2009. "The proportionality of global warming to cumulative carbon emissions," Nature, Nature, vol. 459(7248), pages 829-832, June.
    5. Zeng, Lijun & Wang, Jiafeng & Zhao, Laijun, 2022. "An inter-provincial tradable green certificate futures trading model under renewable portfolio standard policy," Energy, Elsevier, vol. 257(C).
    6. Myles R. Allen & David J. Frame & Chris Huntingford & Chris D. Jones & Jason A. Lowe & Malte Meinshausen & Nicolai Meinshausen, 2009. "Warming caused by cumulative carbon emissions towards the trillionth tonne," Nature, Nature, vol. 458(7242), pages 1163-1166, April.
    7. N. R. Golledge & D. E. Kowalewski & T. R. Naish & R. H. Levy & C. J. Fogwill & E. G. W. Gasson, 2015. "The multi-millennial Antarctic commitment to future sea-level rise," Nature, Nature, vol. 526(7573), pages 421-425, October.
    8. Guo, Zhengquan & Zhang, Xingping & Zheng, Yuhua & Rao, Rao, 2014. "Exploring the impacts of a carbon tax on the Chinese economy using a CGE model with a detailed disaggregation of energy sectors," Energy Economics, Elsevier, vol. 45(C), pages 455-462.
    9. Jin, Jingliang & Wen, Qinglan & Cheng, Siqi & Qiu, Yaru & Zhang, Xianyue & Guo, Xiaojun, 2022. "Optimization of carbon emission reduction paths in the low-carbon power dispatching process," Renewable Energy, Elsevier, vol. 188(C), pages 425-436.
    10. English, Jeffrey & Niet, Taco & Lyseng, Benjamin & Keller, Victor & Palmer-Wilson, Kevin & Robertson, Bryson & Wild, Peter & Rowe, Andrew, 2020. "Flexibility requirements and electricity system planning: Assessing inter-regional coordination with large penetrations of variable renewable supplies," Renewable Energy, Elsevier, vol. 145(C), pages 2770-2782.
    11. Zhao, Laijun & Li, Changmin & Huang, Rongbing & Si, Steven & Xue, Jian & Huang, Wei & Hu, Yue, 2013. "Harmonizing model with transfer tax on water pollution across regional boundaries in a China’s lake basin," European Journal of Operational Research, Elsevier, vol. 225(2), pages 377-382.
    12. Jenny Sumner & Lori Bird & Hillary Dobos, 2011. "Carbon taxes: a review of experience and policy design considerations," Climate Policy, Taylor & Francis Journals, vol. 11(2), pages 922-943, March.
    13. Xu, Shi-Chun & He, Zheng-Xia & Long, Ru-Yin, 2014. "Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI," Applied Energy, Elsevier, vol. 127(C), pages 182-193.
    14. Lee, Chi-Chuan & Zhang, Jian & Hou, Shanshuai, 2023. "The impact of regional renewable energy development on environmental sustainability in China," Resources Policy, Elsevier, vol. 80(C).
    15. Dong, Huijuan & Dai, Hancheng & Geng, Yong & Fujita, Tsuyoshi & Liu, Zhe & Xie, Yang & Wu, Rui & Fujii, Minoru & Masui, Toshihiko & Tang, Liang, 2017. "Exploring impact of carbon tax on China’s CO2 reductions and provincial disparities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 596-603.
    16. Sam Meng, 2014. "How may a carbon tax transform Australian electricity industry? A CGE analysis," Applied Economics, Taylor & Francis Journals, vol. 46(8), pages 796-812, March.
    17. Xu, Renjing & Xu, Bin, 2022. "Exploring the effective way of reducing carbon intensity in the heavy industry using a semiparametric econometric approach," Energy, Elsevier, vol. 243(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dietz, Simon & Gollier, Christian & Kessler, Louise, 2018. "The climate beta," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 258-274.
    2. Gustav Engström & Johan Gars, 2016. "Climatic Tipping Points and Optimal Fossil-Fuel Use," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(3), pages 541-571, November.
    3. Solaymani, Saeed, 2019. "CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector," Energy, Elsevier, vol. 168(C), pages 989-1001.
    4. Adam Michael Bauer & Cristian Proistosescu & Gernot Wagner, 2023. "Carbon Dioxide as a Risky Asset," CESifo Working Paper Series 10278, CESifo.
    5. Frederick Ploeg, 2021. "Carbon pricing under uncertainty," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 28(5), pages 1122-1142, October.
    6. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    7. Nkongho Ayuketang Arreyndip, 2021. "Identifying agricultural disaster risk zones for future climate actions," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-16, December.
    8. Renaud Coulomb & Oskar Lecuyer & Adrien Vogt-Schilb, 2019. "Optimal Transition from Coal to Gas and Renewable Power Under Capacity Constraints and Adjustment Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 557-590, June.
    9. Francesco Lamperti & Valentina Bosetti & Andrea Roventini & Massimo Tavoni, 2019. "The public costs of climate-induced financial instability," Nature Climate Change, Nature, vol. 9(11), pages 829-833, November.
    10. Clyde E. Goulden & Jerry Mead & Richard Horwitz & Munhtuya Goulden & Banzragch Nandintsetseg & Sabrina McCormick & Bazartseren Boldgiv & Peter S. Petraitis, 2016. "Interviews of Mongolian herders and high resolution precipitation data reveal an increase in short heavy rains and thunderstorm activity in semi-arid Mongolia," Climatic Change, Springer, vol. 136(2), pages 281-295, May.
    11. Dietz, Simon & Venmans, Frank, 2019. "Cumulative carbon emissions and economic policy: In search of general principles," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 108-129.
    12. Rick van der Ploeg, 2020. "Discounting and Climate Policy," CESifo Working Paper Series 8441, CESifo.
    13. Vogt-Schilb, Adrien & Meunier, Guy & Hallegatte, Stéphane, 2018. "When starting with the most expensive option makes sense: Optimal timing, cost and sectoral allocation of abatement investment," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 210-233.
    14. Olayinka Oyekola & Lotanna E. Emediegwu & Jubril Olayinka Animashaun, 2023. "Commodity windfalls, political regimes, and environmental quality," Discussion Papers 2306, University of Exeter, Department of Economics.
    15. Ha, Yuejiao & Teng, Fei, 2013. "Midway toward the 2 degree target: Adequacy and fairness of the Cancún pledges," Applied Energy, Elsevier, vol. 112(C), pages 856-865.
    16. Haixin Liu & Anbing Zhang & Tao Jiang & Haitao Lv & Xinxia Liu & Hefeng Wang, 2016. "The Spatiotemporal Variation of Drought in the Beijing-Tianjin-Hebei Metropolitan Region (BTHMR) Based on the Modified TVDI," Sustainability, MDPI, vol. 8(12), pages 1-15, December.
    17. Sareh Vosooghi & Maria Arvaniti & Frederick Van Der Ploeg, 2022. "Self-enforcing climate coalitions for farsighted countries: integrated analysis of heterogeneous countries," Economics Series Working Papers 971, University of Oxford, Department of Economics.
    18. Joshua M. Pearce & Richard Parncutt, 2023. "Quantifying Global Greenhouse Gas Emissions in Human Deaths to Guide Energy Policy," Energies, MDPI, vol. 16(16), pages 1-20, August.
    19. Christoph Hambel & Holger Kraft & Rick van der Ploeg, 2020. "Asset Diversification versus Climate Action," CESifo Working Paper Series 8476, CESifo.
    20. Julie Rozenberg & Adrien Vogt-Schilb & Stephane Hallegatte, 2013. "Efficiency and Acceptability of Climate Policies: Race Against the Lock-ins," Review of Environment, Energy and Economics - Re3, Fondazione Eni Enrico Mattei, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.