IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v526y2015i7573d10.1038_nature15706.html
   My bibliography  Save this article

The multi-millennial Antarctic commitment to future sea-level rise

Author

Listed:
  • N. R. Golledge

    (Antarctic Research Centre, Victoria University of Wellington
    GNS Science)

  • D. E. Kowalewski

    (Environment, and Physics, Worcester State University)

  • T. R. Naish

    (Antarctic Research Centre, Victoria University of Wellington
    GNS Science)

  • R. H. Levy

    (GNS Science)

  • C. J. Fogwill

    (Climate Change Research Centre, University of New South Wales)

  • E. G. W. Gasson

    (Climate System Research Center, University of Massachusetts Amherst)

Abstract

Despite computational and methodological uncertainties, and a wide range of potential greenhouse gas emissions, here millennial-scale simulations of the Antarctic Ice Sheet in a warming climate show that most of Antarctica’s fringing ice shelves will collapse, leading to a rise in sea level of up to 3 metres by 2300.

Suggested Citation

  • N. R. Golledge & D. E. Kowalewski & T. R. Naish & R. H. Levy & C. J. Fogwill & E. G. W. Gasson, 2015. "The multi-millennial Antarctic commitment to future sea-level rise," Nature, Nature, vol. 526(7573), pages 421-425, October.
  • Handle: RePEc:nat:nature:v:526:y:2015:i:7573:d:10.1038_nature15706
    DOI: 10.1038/nature15706
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature15706
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature15706?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James R. Jordan & B. W. J. Miles & G. H. Gudmundsson & S. S. R. Jamieson & A. Jenkins & C. R. Stokes, 2023. "Increased warm water intrusions could cause mass loss in East Antarctica during the next 200 years," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Qureshi, M Fahed & Khandelwal, Himanshu & Usadi, Adam & Barckholtz, Timothy A. & Mhadeshwar, Ashish B. & Linga, Praveen, 2022. "CO2 hydrate stability in oceanic sediments under brine conditions," Energy, Elsevier, vol. 256(C).
    3. Richard Taylor & Ruth Butterfield & Tiago Capela Lourenço & Adis Dzebo & Henrik Carlsen & Richard J. T. Klein, 2020. "Surveying perceptions and practices of high-end climate change," Climatic Change, Springer, vol. 161(1), pages 65-87, July.
    4. David K. Hutchinson & Laurie Menviel & Katrin J. Meissner & Andrew McC. Hogg, 2024. "East Antarctic warming forced by ice loss during the Last Interglacial," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Muhammad Syahiran Abdul Malik & Ashrul Ishak Mohamad Shaiful & Mohd Shuisma Mohd. Ismail & Mohammad Nazri Mohd Jaafar & Amirah Mohamad Sahar, 2017. "Combustion and Emission Characteristics of Coconut-Based Biodiesel in a Liquid Fuel Burner," Energies, MDPI, vol. 10(4), pages 1-12, April.
    6. Miriam Dunn & Mark D. Rounsevell & Henrik Carlsen & Adis Dzebo & Tiago Capela Lourenço & Joseph Hagg, 2017. "To what extent are land resource managers preparing for high-end climate change in Scotland?," Climatic Change, Springer, vol. 141(2), pages 181-195, March.
    7. Michael E. Weber & Nicholas R. Golledge & Chris J. Fogwill & Chris S. M. Turney & Zoë A. Thomas, 2021. "Decadal-scale onset and termination of Antarctic ice-mass loss during the last deglaciation," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    8. Ritchie, Justin & Dowlatabadi, Hadi, 2017. "Why do climate change scenarios return to coal?," Energy, Elsevier, vol. 140(P1), pages 1276-1291.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:526:y:2015:i:7573:d:10.1038_nature15706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.