IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v312y2022ics0306261922002227.html
   My bibliography  Save this article

What drives urban carbon emission efficiency? – Spatial analysis based on nighttime light data

Author

Listed:
  • Fang, Guochang
  • Gao, Zhengye
  • Tian, Lixin
  • Fu, Min

Abstract

This paper explores the factors that improve the efficiency of urban carbon emissions. Based on nighttime light data, the carbon emissions of 282 cities in China from 2004 to 2018 are estimated, and the carbon emission efficiency (CEE) is measured. The spatial autocorrelation results show that CEE in Chinese cities has significant and positive spatial spillover effects. The LISA low-low type cluster area of CEE presents an evolutionary trend of westward migration, and eventually formed two low-efficiency centers in the Central Plains city group and the Sichuan-Chongqing city group. The empirical results of the spatial Durbin error model show that urban population expansion, economic growth and R&D investment have effectively improved CEE, but industrial scale and agglomeration adversely affect CEE. In addition, human capital investment and foreign investment have not exerted their due green growth effects. Manufacturing agglomeration had a negative impact on local CEE, but had a warning effect on neighboring regions. Different from the manufacturing industry, the agglomeration of producer services industry can bring significant improvement to CEE, accompanied by a demonstration effect which can promote the CEE in adjacent regions. Further, this paper finds that developing the synergy between manufacturing and producer services industries can significantly restrain the negative effects of industry on CEE. This paper enriches the performance evaluation framework of low-carbon city development in theory, and variesthesituationsthatpreviousresearches only concerned about carbon emissions while ignoring emissions efficiency. This paper is abeneficial policy practice of the coordinated development of economic growth and ecological environmental protection in the regional coordinated development mechanism, whichindicatesthat strengthening industrial collaboration can effectively improve the efficiency of green production in cities.

Suggested Citation

  • Fang, Guochang & Gao, Zhengye & Tian, Lixin & Fu, Min, 2022. "What drives urban carbon emission efficiency? – Spatial analysis based on nighttime light data," Applied Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:appene:v:312:y:2022:i:c:s0306261922002227
    DOI: 10.1016/j.apenergy.2022.118772
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922002227
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118772?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Jincai & Ji, Guangxing & Yue, YanLin & Lai, Zhizhu & Chen, Yulong & Yang, Dongyang & Yang, Xu & Wang, Zheng, 2019. "Spatio-temporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets," Applied Energy, Elsevier, vol. 235(C), pages 612-624.
    2. Zhu, Bangzhu & Ye, Shunxin & Jiang, Minxing & Wang, Ping & Wu, Zhanchi & Xie, Rui & Chevallier, Julien & Wei, Yi-Ming, 2019. "Achieving the carbon intensity target of China: A least squares support vector machine with mixture kernel function approach," Applied Energy, Elsevier, vol. 233, pages 196-207.
    3. Rafiq, Shuddhasattwa & Salim, Ruhul & Nielsen, Ingrid, 2016. "Urbanization, openness, emissions, and energy intensity: A study of increasingly urbanized emerging economies," Energy Economics, Elsevier, vol. 56(C), pages 20-28.
    4. Zhu, Hui-Ming & You, Wan-Hai & Zeng, Zhao-fa, 2012. "Urbanization and CO2 emissions: A semi-parametric panel data analysis," Economics Letters, Elsevier, vol. 117(3), pages 848-850.
    5. Liangen Zeng & Haiyan Lu & Yenping Liu & Yang Zhou & Haoyu Hu, 2019. "Analysis of Regional Differences and Influencing Factors on China’s Carbon Emission Efficiency in 2005–2015," Energies, MDPI, vol. 12(16), pages 1-21, August.
    6. Ferreira, Ana & Pinheiro, Manuel Duarte & de Brito, Jorge & Mateus, Ricardo, 2018. "Combined carbon and energy intensity benchmarks for sustainable retail stores," Energy, Elsevier, vol. 165(PB), pages 877-889.
    7. Zhang, Ning & Yu, Keren & Chen, Zhongfei, 2017. "How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis," Energy Policy, Elsevier, vol. 107(C), pages 678-687.
    8. Zhang, Ming & Li, Huanan & Zhou, Min & Mu, Hailin, 2011. "Decomposition analysis of energy consumption in Chinese transportation sector," Applied Energy, Elsevier, vol. 88(6), pages 2279-2285, June.
    9. Wang, Yuan & Li, Li & Kubota, Jumpei & Han, Rong & Zhu, Xiaodong & Lu, Genfa, 2016. "Does urbanization lead to more carbon emission? Evidence from a panel of BRICS countries," Applied Energy, Elsevier, vol. 168(C), pages 375-380.
    10. Liu, Xiaochen & Sweeney, John, 2012. "Modelling the impact of urban form on household energy demand and related CO2 emissions in the Greater Dublin Region," Energy Policy, Elsevier, vol. 46(C), pages 359-369.
    11. Bai, Yang & Zhou, Peng & Tian, Lixin & Meng, Fanyi, 2016. "Desirable Strategic Petroleum Reserves policies in response to supply uncertainty: A stochastic analysis," Applied Energy, Elsevier, vol. 162(C), pages 1523-1529.
    12. Xu, Bin & Lin, Boqiang, 2015. "How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models," Energy Economics, Elsevier, vol. 48(C), pages 188-202.
    13. Zhou, Yang & Liu, Yansui, 2016. "Does population have a larger impact on carbon dioxide emissions than income? Evidence from a cross-regional panel analysis in China," Applied Energy, Elsevier, vol. 180(C), pages 800-809.
    14. Tan, Ruipeng & Xu, Mengmeng & Sun, Chuanwang, 2021. "The impacts of energy reallocation on economic output and CO2 emissions in China," Energy Economics, Elsevier, vol. 94(C).
    15. Wang, Guofeng & Deng, Xiangzheng & Wang, Jingyu & Zhang, Fan & Liang, Shiqi, 2019. "Carbon emission efficiency in China: A spatial panel data analysis," China Economic Review, Elsevier, vol. 56(C), pages 1-1.
    16. Zhang, Ning & Wei, Xiao, 2015. "Dynamic total factor carbon emissions performance changes in the Chinese transportation industry," Applied Energy, Elsevier, vol. 146(C), pages 409-420.
    17. Wang, Shaojian & Zeng, Jingyuan & Liu, Xiaoping, 2019. "Examining the multiple impacts of technological progress on CO2 emissions in China: A panel quantile regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 140-150.
    18. Jianhuan Huang & Yantuan Yu & Chunbo Ma, 2018. "Energy Efficiency Convergence in China: Catch-Up, Lock-In and Regulatory Uniformity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(1), pages 107-130, May.
    19. Ke, Jing & Zheng, Nina & Fridley, David & Price, Lynn & Zhou, Nan, 2012. "Potential energy savings and CO2 emissions reduction of China's cement industry," Energy Policy, Elsevier, vol. 45(C), pages 739-751.
    20. Zhu, Bangzhu & Zhang, Mengfan & Zhou, Yanhua & Wang, Ping & Sheng, Jichuan & He, Kaijian & Wei, Yi-Ming & Xie, Rui, 2019. "Exploring the effect of industrial structure adjustment on interprovincial green development efficiency in China: A novel integrated approach," Energy Policy, Elsevier, vol. 134(C).
    21. Yang, Di & Luan, Weixin & Qiao, Lu & Pratama, Mahardhika, 2020. "Modeling and spatio-temporal analysis of city-level carbon emissions based on nighttime light satellite imagery," Applied Energy, Elsevier, vol. 268(C).
    22. Zhang, Pengfei & Cai, Wenqiu & Yao, Mingtao & Wang, Zhiyou & Yang, Luzhen & Wei, Wendong, 2020. "Urban carbon emissions associated with electricity consumption in Beijing and the driving factors," Applied Energy, Elsevier, vol. 275(C).
    23. Meng, Lina & Graus, Wina & Worrell, Ernst & Huang, Bo, 2014. "Estimating CO2 (carbon dioxide) emissions at urban scales by DMSP/OLS (Defense Meteorological Satellite Program's Operational Linescan System) nighttime light imagery: Methodological challenges and a ," Energy, Elsevier, vol. 71(C), pages 468-478.
    24. Xu, Le & Fan, Meiting & Yang, Lili & Shao, Shuai, 2021. "Heterogeneous green innovations and carbon emission performance: Evidence at China's city level," Energy Economics, Elsevier, vol. 99(C).
    25. Shao, Shuai & Guo, Longfei & Yu, Mingliang & Yang, Lili & Guan, Dabo, 2019. "Does the rebound effect matter in energy import-dependent mega-cities? Evidence from Shanghai (China)," Applied Energy, Elsevier, vol. 241(C), pages 212-228.
    26. Li, Hongbing & Zheng, Qingbiao & Zhang, Bingbing & Sun, Chuanwang, 2021. "Trade policy uncertainty and improvement in energy efficiency: Empirical evidence from prefecture-level cities in China," Energy Economics, Elsevier, vol. 104(C).
    27. G. P. Peters & R. M. Andrew & J. G. Canadell & P. Friedlingstein & R. B. Jackson & J. I. Korsbakken & C. Quéré & A. Peregon, 2020. "Carbon dioxide emissions continue to grow amidst slowly emerging climate policies," Nature Climate Change, Nature, vol. 10(1), pages 3-6, January.
    28. Yu, Yantuan & Zhang, Ning, 2021. "Low-carbon city pilot and carbon emission efficiency: Quasi-experimental evidence from China," Energy Economics, Elsevier, vol. 96(C).
    29. Wu, Zhanchi & Fan, Xiangjun & Zhu, Bangzhu & Xia, Jiahui & Zhang, Lin & Wang, Ping, 2022. "Do government subsidies improve innovation investment for new energy firms: A quasi-natural experiment of China's listed companies," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    30. Shahbaz, Muhammad & Salah Uddin, Gazi & Ur Rehman, Ijaz & Imran, Kashif, 2014. "Industrialization, electricity consumption and CO2 emissions in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 575-586.
    31. Zhou, Xiaoyan & Zhang, Jie & Li, Junpeng, 2013. "Industrial structural transformation and carbon dioxide emissions in China," Energy Policy, Elsevier, vol. 57(C), pages 43-51.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shu, Haicheng & Wang, Yu & Umar, Muhammad & Zhong, Yifan, 2023. "Dynamics of renewable energy research, investment in EnvoTech and environmental quality in the context of G7 countries," Energy Economics, Elsevier, vol. 120(C).
    2. Qizhen Wang & Suxia Liu, 2022. "How Do FDI and Technological Innovation Affect Carbon Emission Efficiency in China?," Energies, MDPI, vol. 15(23), pages 1-16, December.
    3. Tang, Zhaopei & Wang, Liehui & Wu, Wei, 2023. "The impact of high-speed rail on urban carbon emissions: Evidence from the Yangtze River Delta," Journal of Transport Geography, Elsevier, vol. 110(C).
    4. Du, Xiaoyun & Meng, Conghui & Guo, Zhenhua & Yan, Hang, 2023. "An improved approach for measuring the efficiency of low carbon city practice in China," Energy, Elsevier, vol. 268(C).
    5. Xiao Ling & Yue Gao & Guoyong Wu, 2023. "How Does Intensive Land Use Affect Low-Carbon Transition in China? New Evidence from the Spatial Econometric Analysis," Land, MDPI, vol. 12(8), pages 1-26, August.
    6. Qi He & Hongli Jiang, 2024. "Does the Energy-Consumption Permit Trading Scheme Improve Carbon Emission Performance? Evidence from a Quasi-Natural Experiment in China," Sustainability, MDPI, vol. 16(1), pages 1-27, January.
    7. Hanhua Shao & Jixin Cheng & Yuansheng Wang & Xiaoming Li, 2022. "Can Digital Finance Promote Comprehensive Carbon Emission Performance? Evidence from Chinese Cities," IJERPH, MDPI, vol. 19(16), pages 1-18, August.
    8. Niu, Xiaoqin & Yüksel, Serhat & Dinçer, Hasan, 2023. "Emission strategy selection for the circular economy-based production investments with the enhanced decision support system," Energy, Elsevier, vol. 274(C).
    9. Yali Wang & Yangyang Liu & Zijun Wang & Yan Zhang & Bo Fang & Shengnan Jiang & Yijia Yang & Zhongming Wen & Wei Zhang & Zhixin Zhang & Ziqi Lin & Peidong Han & Wenjie Yang, 2023. "Assessing the Spatio-Temporal Dynamics of Land Use Carbon Emissions and Multiple Driving Factors in the Guanzhong Area of Shaanxi Province," Sustainability, MDPI, vol. 15(9), pages 1-23, May.
    10. Zhao, Jiqiang & Wu, Xianhua & Guo, Ji & Gao, Chao, 2022. "Allocation of SO2 emission rights in city agglomerations considering cross-border transmission of pollutants: A new network DEA model," Applied Energy, Elsevier, vol. 325(C).
    11. Yaohui Liu & Wenyi Liu & Peiyuan Qiu & Jie Zhou & Linke Pang, 2023. "Spatiotemporal Evolution and Correlation Analysis of Carbon Emissions in the Nine Provinces along the Yellow River since the 21st Century Using Nighttime Light Data," Land, MDPI, vol. 12(7), pages 1-19, July.
    12. Ning Xu & Desen Zhao & Wenjie Zhang & He Zhang & Wanxu Chen & Min Ji & Ming Liu, 2022. "Innovation-Driven Development and Urban Land Low-Carbon Use Efficiency: A Policy Assessment from China," Land, MDPI, vol. 11(10), pages 1-21, September.
    13. Chenxu Liu & Ruien Tang & Yaqi Guo & Yuhan Sun & Xinyi Liu, 2022. "Research on the Structure of Carbon Emission Efficiency and Influencing Factors in the Yangtze River Delta Urban Agglomeration," Sustainability, MDPI, vol. 14(10), pages 1-22, May.
    14. Ning Xu & He Zhang & Tixin Li & Xiao Ling & Qian Shen, 2022. "How Big Data Affect Urban Low-Carbon Transformation—A Quasi-Natural Experiment from China," IJERPH, MDPI, vol. 19(23), pages 1-16, December.
    15. Ren-Long Zhang & Xiao-Hong Liu & Wei-Bo Jiang, 2023. "How Does the Industrial Digitization Affect Carbon Emission Efficiency? Empirical Measurement Evidence from China’s Industry," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
    16. Ruimin Yin & Zhanqi Wang & Ji Chai & Yunxiao Gao & Feng Xu, 2022. "The Evolution and Response of Space Utilization Efficiency and Carbon Emissions: A Comparative Analysis of Spaces and Regions," Land, MDPI, vol. 11(3), pages 1-21, March.
    17. Huangling Gu & Yan Liu & Hao Xia & Xiao Tan & Yanjia Zeng & Xianchao Zhao, 2023. "Spatiotemporal Dynamic Evolution and Its Driving Mechanism of Carbon Emissions in Hunan Province in the Last 20 Years," IJERPH, MDPI, vol. 20(4), pages 1-25, February.
    18. Sun, Chuanwang & Chen, Zhilong & Guo, Zhiru & Wu, Huixin, 2022. "Energy rebound effect of various industries in China: Based on hybrid energy input-output model," Energy, Elsevier, vol. 261(PB).
    19. Li, Lei & Ma, Shaojun & Zheng, Yilin & Ma, Xiaoyu & Duan, Kaifeng, 2022. "Do regional integration policies matter? Evidence from a quasi-natural experiment on heterogeneous green innovation," Energy Economics, Elsevier, vol. 116(C).
    20. Luo, Haizhi & Li, Yingyue & Gao, Xinyu & Meng, Xiangzhao & Yang, Xiaohu & Yan, Jinyue, 2023. "Carbon emission prediction model of prefecture-level administrative region: A land-use-based case study of Xi'an city, China," Applied Energy, Elsevier, vol. 348(C).
    21. Qizhen Wang & Qian Zhang, 2022. "Foreign Direct Investment and Carbon Emission Efficiency: The Role of Direct and Indirect Channels," Sustainability, MDPI, vol. 14(20), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Bin & Lin, Boqiang, 2015. "How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models," Energy Economics, Elsevier, vol. 48(C), pages 188-202.
    2. Du, Xiaoyun & Meng, Conghui & Guo, Zhenhua & Yan, Hang, 2023. "An improved approach for measuring the efficiency of low carbon city practice in China," Energy, Elsevier, vol. 268(C).
    3. Yi Xiao & Yuantao Liao & Zhe Li & Zhuojun Li & Shaojian Wang, 2023. "Impacts of Land Urbanization on CO 2 Emissions: Policy Implications Based on Developmental Stages," Land, MDPI, vol. 12(10), pages 1-15, October.
    4. Khalid Khan & Chi-Wei Su & Ran Tao & Lin-Na Hao, 2020. "Urbanization and carbon emission: causality evidence from the new industrialized economies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7193-7213, December.
    5. Nguyen Phuc Canh & Su Dinh Thanh & Christophe Schinckus & Jo Bensemann & Lai Trung Thanh, 2019. "Global Emissions: A New Contribution from the Shadow Economy," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 320-337.
    6. Liobikienė, Genovaitė & Butkus, Mindaugas, 2019. "Scale, composition, and technique effects through which the economic growth, foreign direct investment, urbanization, and trade affect greenhouse gas emissions," Renewable Energy, Elsevier, vol. 132(C), pages 1310-1322.
    7. Yixi Xue & Jie Ren & Xiaohang Bi, 2019. "Impact of Influencing Factors on CO 2 Emissions in the Yangtze River Delta during Urbanization," Sustainability, MDPI, vol. 11(15), pages 1-19, August.
    8. Stephen K. Dimnwobi & Chukwunonso Ekesiobi & Chekwube V. Madichie & Simplice A. Asongu, 2021. "Population Dynamics and Environmental Quality in Africa," Working Papers 21/047, European Xtramile Centre of African Studies (EXCAS).
    9. Pan, Minjie & Zhao, Xin & lv, Kangjuan & Rosak-Szyrocka, Joanna & Mentel, Grzegorz & Truskolaski, Tadeusz, 2023. "Internet development and carbon emission-reduction in the era of digitalization: Where will resource-based cities go?," Resources Policy, Elsevier, vol. 81(C).
    10. Li, Kunming & Fang, Liting & He, Lerong, 2019. "How population and energy price affect China's environmental pollution?," Energy Policy, Elsevier, vol. 129(C), pages 386-396.
    11. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    12. Rasool, Samma Faiz & Zaman, Shah & Jehan, Noor & Chin, Tachia & Khan, Saleem & Zaman, Qamar uz, 2022. "Investigating the role of the tech industry, renewable energy, and urbanization in sustainable environment: Policy directions in the context of developing economies," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    13. Wang, Wei-Zheng & Liu, Lan-Cui & Liao, Hua & Wei, Yi-Ming, 2021. "Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries," Energy Policy, Elsevier, vol. 151(C).
    14. Xie, Rui & Fang, Jiayu & Liu, Cenjie, 2017. "The effects of transportation infrastructure on urban carbon emissions," Applied Energy, Elsevier, vol. 196(C), pages 199-207.
    15. Yanan Wang & Wei Chen & Minjuan Zhao & Bowen Wang, 2019. "Analysis of the influencing factors on CO2 emissions at different urbanization levels: regional difference in China based on panel estimation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 627-645, March.
    16. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    17. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    18. Wei, Honghong & Lahiri, Radhika, 2022. "Urbanization, energy-use intensity and emissions: A sectoral approach," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 667-684.
    19. Wang, Zhaohua & Rasool, Yasir & Zhang, Bin & Ahmed, Zahoor & Wang, Bo, 2020. "Dynamic linkage among industrialisation, urbanisation, and CO2 emissions in APEC realms: Evidence based on DSUR estimation," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 382-389.
    20. Yang Ding & Qing Yang & Lanjuan Cao, 2021. "Examining the Impacts of Economic, Social, and Environmental Factors on the Relationship between Urbanization and CO 2 Emissions," Energies, MDPI, vol. 14(21), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:312:y:2022:i:c:s0306261922002227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.