IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v308y2022ics0306261921014203.html
   My bibliography  Save this article

Energy-water-carbon nexus system planning: A case study of Yangtze River Delta urban agglomeration, China

Author

Listed:
  • Liang, M.S.
  • Huang, G.H.
  • Chen, J.P.
  • Li, Y.P.

Abstract

In this study, a chance-constrained fractional programming model is developed for energy-water-carbon nexus systems in Yangtze River Delta urban agglomeration, China. The developed model can tackle the ratio objectives and multiple uncertainties expressed as interval numbers and probability distributions, and provide desired decision alternatives under different constraint-violation levels. Then, the developed model is applied to the strategic planning of the energy-water-carbon nexus system in Yangtze River Delta urban agglomeration for addressing issues of energy-related water resource shortage and carbon emission reduction. Two different development patterns are designed in this strategic planning. One is to maximize the renewable electricity generation per unit of system cost corresponding to the system efficiency-oriented development pattern, while the other is to minimize the total system cost with respect to the economic benefit-oriented development pattern. The obtained comparative results show that the energy-water-carbon nexus system under the system efficiency-oriented development pattern would increase 21.71% of renewable electricity generation and 16.29% of system efficiency, save 8.95% of water resource, reduce 14.61% of carbon emission, but increase 4.07% of imported electricity and 7.85% of system cost over the planning horizon. These findings can provide profound solutions and insights for decision makers considering different policy implications. The application to Yangtze River Delta urban agglomeration energy-water-carbon nexus system shows the practicability of the extension to other regions under severe situations of energy supply limitation, water resource shortage and carbon emission reduction.

Suggested Citation

  • Liang, M.S. & Huang, G.H. & Chen, J.P. & Li, Y.P., 2022. "Energy-water-carbon nexus system planning: A case study of Yangtze River Delta urban agglomeration, China," Applied Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:appene:v:308:y:2022:i:c:s0306261921014203
    DOI: 10.1016/j.apenergy.2021.118144
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921014203
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Zhenkun & Jiang, Ping & Zhang, Lifang & Niu, Xinsong, 2020. "A combined forecasting model for time series: Application to short-term wind speed forecasting," Applied Energy, Elsevier, vol. 259(C).
    2. Zhu, H. & Huang, W.W. & Huang, G.H., 2014. "Planning of regional energy systems: An inexact mixed-integer fractional programming model," Applied Energy, Elsevier, vol. 113(C), pages 500-514.
    3. Zhu, Y. & Huang, G.H. & Li, Y.P. & He, L. & Zhang, X.X., 2011. "An interval full-infinite mixed-integer programming method for planning municipal energy systems - A case study of Beijing," Applied Energy, Elsevier, vol. 88(8), pages 2846-2862, August.
    4. Li, G.C. & Huang, G.H. & Sun, W. & Ding, X.W., 2014. "An inexact optimization model for energy-environment systems management in the mixed fuzzy, dual-interval and stochastic environment," Renewable Energy, Elsevier, vol. 64(C), pages 153-163.
    5. Ding, Xiaowen & Tian, Wei & Chen, Qingwei & Wei, Guoliang, 2019. "Policies on water resources assessment of coastal nuclear power plants in China," Energy Policy, Elsevier, vol. 128(C), pages 170-178.
    6. Xie, Y.L. & Huang, G.H. & Li, W. & Ji, L., 2014. "Carbon and air pollutants constrained energy planning for clean power generation with a robust optimization model—A case study of Jining City, China," Applied Energy, Elsevier, vol. 136(C), pages 150-167.
    7. Wang, Saige & Fath, Brian & Chen, Bin, 2019. "Energy–water nexus under energy mix scenarios using input–output and ecological network analyses," Applied Energy, Elsevier, vol. 233, pages 827-839.
    8. Tan, Qinliang & Ding, Yihong & Ye, Qi & Mei, Shufan & Zhang, Yimei & Wei, Yongmei, 2019. "Optimization and evaluation of a dispatch model for an integrated wind-photovoltaic-thermal power system based on dynamic carbon emissions trading," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Zhu, Yuli & Liang, Ji & Yang, Qing & Zhou, Hewen & Peng, Kun, 2019. "Water use of a biomass direct-combustion power generation system in China: A combination of life cycle assessment and water footprint analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    10. Hickman, William & Muzhikyan, Aramazd & Farid, Amro M., 2017. "The synergistic role of renewable energy integration into the unit commitment of the energy water nexus," Renewable Energy, Elsevier, vol. 108(C), pages 220-229.
    11. Yang, Xuechun & Wang, Yutao & Sun, Mingxing & Wang, Renqing & Zheng, Peiming, 2018. "Exploring the environmental pressures in urban sectors: An energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 228(C), pages 2298-2307.
    12. Lv, J. & Li, Y.P. & Huang, G.H. & Suo, C. & Mei, H. & Li, Y., 2020. "Quantifying the impact of water availability on China's energy system under uncertainties: A perceptive of energy-water nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Shan, Yuli & Liu, Jianghua & Liu, Zhu & Xu, Xinwanghao & Shao, Shuai & Wang, Peng & Guan, Dabo, 2016. "New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors," Applied Energy, Elsevier, vol. 184(C), pages 742-750.
    14. Huang, G. H., 1998. "A hybrid inexact-stochastic water management model," European Journal of Operational Research, Elsevier, vol. 107(1), pages 137-158, May.
    15. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    16. Zhang, X.Y. & Huang, G.H. & Zhu, H. & Li, Y.P., 2017. "A fuzzy-stochastic power system planning model: Reflection of dual objectives and dual uncertainties," Energy, Elsevier, vol. 123(C), pages 664-676.
    17. A. Charnes & W. W. Cooper, 1983. "Response to "Decision Problems Under Risk and Chance Constrained Programming: Dilemmas in the Transition"," Management Science, INFORMS, vol. 29(6), pages 750-753, June.
    18. Lei, Yang & Wang, Dan & Jia, Hongjie & Chen, Jingcheng & Li, Jingru & Song, Yi & Li, Jiaxi, 2020. "Multi-objective stochastic expansion planning based on multi-dimensional correlation scenario generation method for regional integrated energy system integrated renewable energy," Applied Energy, Elsevier, vol. 276(C).
    19. A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
    20. Suo, C. & Li, Y.P. & Mei, H. & Lv, J. & Sun, J. & Nie, S., 2021. "Towards sustainability for China's energy system through developing an energy-climate-water nexus model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    21. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Multi-objective optimization of energy arbitrage in community energy storage systems using different battery technologies," Applied Energy, Elsevier, vol. 239(C), pages 356-372.
    22. Prina, Matteo Giacomo & Casalicchio, Valeria & Kaldemeyer, Cord & Manzolini, Giampaolo & Moser, David & Wanitschke, Alexander & Sparber, Wolfram, 2020. "Multi-objective investment optimization for energy system models in high temporal and spatial resolution," Applied Energy, Elsevier, vol. 264(C).
    23. Jin, L. & Huang, G.H. & Fan, Y.R. & Wang, L. & Wu, T., 2015. "A pseudo-optimal inexact stochastic interval T2 fuzzy sets approach for energy and environmental systems planning under uncertainty: A case study for Xiamen City of China," Applied Energy, Elsevier, vol. 138(C), pages 71-90.
    24. Nanduri, Vishnu & Saavedra-Antolínez, Ivan, 2013. "A competitive Markov decision process model for the energy–water–climate change nexus," Applied Energy, Elsevier, vol. 111(C), pages 186-198.
    25. Sun, Li & Pan, Bolin & Gu, Alun & Lu, Hui & Wang, Wei, 2018. "Energy–water nexus analysis in the Beijing–Tianjin–Hebei region: Case of electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 27-34.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rupu Yang & Min Wang & Mengxue Zhao & Xiangzhao Feng, 2022. "Synergic Benefits of Air Pollutant Reduction, CO 2 Emission Abatement, and Water Saving under the Goal of Achieving Carbon Emission Peak: The Case of Tangshan City, China," IJERPH, MDPI, vol. 19(12), pages 1-24, June.
    2. Zigao He, 2023. "The Water–Energy–Carbon Coupling Coordination Level in China," Sustainability, MDPI, vol. 16(1), pages 1-15, December.
    3. Wu, Huijun & Zeng, Xiaoyu & Zhang, Ling & Liu, Xin & Jiang, Songyan & Dong, Zhanfeng & Meng, Xiangrui & Wang, Qianqian, 2023. "Water-energy nexus embedded in coal supply chain of a coal-based city, China," Resources Policy, Elsevier, vol. 85(PA).
    4. Yachen Xie & Jiaguo Qi & Rui Zhang & Xiaomiao Jiao & Gabriela Shirkey & Shihua Ren, 2022. "Toward a Carbon-Neutral State: A Carbon–Energy–Water Nexus Perspective of China’s Coal Power Industry," Energies, MDPI, vol. 15(12), pages 1-24, June.
    5. Urwah Naveed & Nor Erniza Mohammad Rozali & Shuhaimi Mahadzir, 2022. "Energy–Water–Carbon Nexus Study for the Optimal Design of Integrated Energy–Water Systems Considering Process Losses," Energies, MDPI, vol. 15(22), pages 1-13, November.
    6. Lohrmann, Alena & Farfan, Javier & Lohrmann, Christoph & Kölbel, Julian Fritz & Pettersson, Frank, 2023. "Troubled waters: Estimating the role of the power sector in future water scarcity crises," Energy, Elsevier, vol. 282(C).
    7. Weimin Zhang & Wangrong Ma & Qiwei Chen, 2022. "Does Regional Development Policy Promote Industrial Structure Upgrading? Evidence from the Yangtze River Delta in China," Sustainability, MDPI, vol. 14(13), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, J. & Nie, S. & Shan, B.G. & Li, Y.P. & Huang, G.H. & Liu, Z.P., 2019. "Development of an interval-credibility-chance constrained energy-water nexus system planning model—a case study of Xiamen, China," Energy, Elsevier, vol. 181(C), pages 677-693.
    2. Changyu Zhou & Guohe Huang & Jiapei Chen, 2019. "A Type-2 Fuzzy Chance-Constrained Fractional Integrated Modeling Method for Energy System Management of Uncertainties and Risks," Energies, MDPI, vol. 12(13), pages 1-21, June.
    3. Zhao, Yuhuan & Shi, Qiaoling & li, Hao & Qian, Zhiling & Zheng, Lu & Wang, Song & He, Yizhang, 2022. "Simulating the economic and environmental effects of integrated policies in energy-carbon-water nexus of China," Energy, Elsevier, vol. 238(PA).
    4. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    5. Wang, Saige & Chen, Bin, 2021. "Unraveling energy–water nexus paths in urban agglomeration: A case study of Beijing–Tianjin–Hebei," Applied Energy, Elsevier, vol. 304(C).
    6. Suo, C. & Li, Y.P. & Mei, H. & Lv, J. & Sun, J. & Nie, S., 2021. "Towards sustainability for China's energy system through developing an energy-climate-water nexus model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Ana Luiza Fontenelle & Erik Nilsson & Ieda Geriberto Hidalgo & Cintia B. Uvo & Drielli Peyerl, 2022. "Temporal Understanding of the Water–Energy Nexus: A Literature Review," Energies, MDPI, vol. 15(8), pages 1-21, April.
    8. Nawab, Asim & Liu, Gengyuan & Meng, Fanxin & Hao, Yan & Zhang, Yan, 2019. "Urban energy-water nexus: Spatial and inter-sectoral analysis in a multi-scale economy," Ecological Modelling, Elsevier, vol. 403(C), pages 44-56.
    9. Hao Li & Yuhuan Zhao & Jiang Lin, 2020. "A review of the energy–carbon–water nexus: Concepts, research focuses, mechanisms, and methodologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
    10. Cássia Juliana Fernandes Torres & Camilla Hellen Peixoto de Lima & Bárbara Suzart de Almeida Goodwin & Terencio Rebello de Aguiar Junior & Andrea Sousa Fontes & Daniel Veras Ribeiro & Rodrigo Saldanha, 2019. "A Literature Review to Propose a Systematic Procedure to Develop “Nexus Thinking” Considering the Water–Energy–Food Nexus," Sustainability, MDPI, vol. 11(24), pages 1-32, December.
    11. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "An interval-valued minimax-regret analysis approach for the identification of optimal greenhouse-gas abatement strategies under uncertainty," Energy Policy, Elsevier, vol. 39(7), pages 4313-4324, July.
    12. Chen, Shu & Shao, Dongguo & Tan, Xuezhi & Gu, Wenquan & Lei, Caixiu, 2017. "An interval multistage classified model for regional inter- and intra-seasonal water management under uncertain and nonstationary condition," Agricultural Water Management, Elsevier, vol. 191(C), pages 98-112.
    13. Min Zhou & Shasha Lu & Shukui Tan & Danping Yan & Guoliang Ou & Dianfeng Liu & Xiang Luo & Yanan Li & Lu Zhang & Zuo Zhang & Xiangbo Zhu, 2017. "A stochastic equilibrium chance-constrained programming model for municipal solid waste management of the City of Dalian, China," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(1), pages 199-218, January.
    14. Changyu Zhou & Guohe Huang & Jiapei Chen, 2018. "A Multi-Objective Energy and Environmental Systems Planning Model: Management of Uncertainties and Risks for Shanxi Province, China," Energies, MDPI, vol. 11(10), pages 1-21, October.
    15. Zhai, Mengyu & Huang, Guohe & Liu, Lirong & Zheng, Boyue & Guan, Yuru, 2020. "Inter-regional carbon flows embodied in electricity transmission: network simulation for energy-carbon nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    16. Cao, M.F. & Huang, G.H. & Lin, Q.G., 2010. "Integer programming with random-boundary intervals for planning municipal power systems," Applied Energy, Elsevier, vol. 87(8), pages 2506-2516, August.
    17. Xu, Y. & Huang, G.H. & Qin, X.S. & Cao, M.F., 2009. "SRCCP: A stochastic robust chance-constrained programming model for municipal solid waste management under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 352-363.
    18. Niu, Geng & Zheng, Yi & Han, Feng & Qin, Huapeng, 2019. "The nexus of water, ecosystems and agriculture in arid areas: A multiobjective optimization study on system efficiencies," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    19. Lv, Y. & Yan, X.D. & Sun, W. & Gao, Z.Y., 2015. "A risk-based method for planning of bus–subway corridor evacuation under hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 188-199.
    20. Song, Tangnyu & Huang, Guohe & Zhou, Xiong & Wang, Xiuquan, 2018. "An inexact two-stage fractional energy systems planning model," Energy, Elsevier, vol. 160(C), pages 275-289.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:308:y:2022:i:c:s0306261921014203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.