IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2851-d793208.html
   My bibliography  Save this article

Temporal Understanding of the Water–Energy Nexus: A Literature Review

Author

Listed:
  • Ana Luiza Fontenelle

    (Division of Water Resources Engineering, Faculty of Engineering, Lund University, 221 00 Lund, Sweden
    School of Mechanical Engineering, State University of Campinas, Campinas 13083-860, Brazil)

  • Erik Nilsson

    (Division of Water Resources Engineering, Faculty of Engineering, Lund University, 221 00 Lund, Sweden)

  • Ieda Geriberto Hidalgo

    (School of Mechanical Engineering, State University of Campinas, Campinas 13083-860, Brazil
    School of Technology, State University of Campinas, Limeira 13484-332, Brazil)

  • Cintia B. Uvo

    (Division of Water Resources Engineering, Faculty of Engineering, Lund University, 221 00 Lund, Sweden
    Finnish Environment Institute, 00790 Helsinki, Finland)

  • Drielli Peyerl

    (Institute of Energy and Environment, University of São Paulo, São Paulo 05508-900, Brazil)

Abstract

Guaranteeing reliable access to water and clean energy has been one of the most debated topics to promote sustainable development, which has made the Water–Energy Nexus (WEN) a relevant field of study. However, despite much development of the WEN, there are still many gaps to be addressed. One of these gaps is the understanding of temporal features. To address this, this study aimed to identify, categorize, and analyze the main temporal features applied in WEN studies based on a review of academic publications from 2010 to 2021. The results showed that most of the recent literature has focused on understanding the WEN from a quantitative perspective, often does not provide clear motivations for their choice of time, and lacks understanding of the role of historical processes. To improve the temporal understanding in WEN research, there is a need to include more methodological diversity, enhance the understanding of historical developments, and diversify the data use. The presented measures provide a chance to improve the evaluation of key issues, enhance the understanding of drivers of trade-offs between the water and energy sectors, and ground the discussion besides quantification. Moreover, these measures help the scientific community better communicate results to a broader audience.

Suggested Citation

  • Ana Luiza Fontenelle & Erik Nilsson & Ieda Geriberto Hidalgo & Cintia B. Uvo & Drielli Peyerl, 2022. "Temporal Understanding of the Water–Energy Nexus: A Literature Review," Energies, MDPI, vol. 15(8), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2851-:d:793208
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2851/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2851/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    2. Jiahai Yuan & Qi Lei & Minpeng Xiong & Jingsheng Guo & Changhong Zhao, 2014. "Scenario-Based Analysis on Water Resources Implication of Coal Power in Western China," Sustainability, MDPI, vol. 6(10), pages 1-26, October.
    3. Lee, Mengshan & Keller, Arturo A. & Chiang, Pen-Chi & Den, Walter & Wang, Hongtao & Hou, Chia-Hung & Wu, Jiang & Wang, Xin & Yan, Jinyue, 2017. "Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks," Applied Energy, Elsevier, vol. 205(C), pages 589-601.
    4. Vanesa Castán Broto & HS Sudhira, 2019. "Engineering modernity: Water, electricity and the infrastructure landscapes of Bangalore, India," Urban Studies, Urban Studies Journal Limited, vol. 56(11), pages 2261-2279, August.
    5. Liu, Gengyuan & Hu, Junmei & Chen, Caocao & Xu, Linyu & Wang, Ning & Meng, Fanxin & Giannetti, Biagio F. & Agostinho, Feni & Almeida, Cecília M.V. B. & Casazza, Marco, 2021. "LEAP-WEAP analysis of urban energy-water dynamic nexus in Beijing (China)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    6. Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Fan, Jing-Li & Kong, Ling-Si & Zhang, Xian, 2018. "Synergetic effects of water and climate policy on energy-water nexus in China: A computable general equilibrium analysis," Energy Policy, Elsevier, vol. 123(C), pages 308-317.
    8. Okadera, Tomohiro & Geng, Yong & Fujita, Tsuyoshi & Dong, Huijuan & Liu, Zhu & Yoshida, Noboru & Kanazawa, Takaaki, 2015. "Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach," Energy Policy, Elsevier, vol. 78(C), pages 148-157.
    9. Bas J. van Ruijven & Enrica De Cian & Ian Sue Wing, 2019. "Amplification of future energy demand growth due to climate change," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    10. Li, Nan & Chen, Wenying, 2019. "Energy-water nexus in China's energy bases: From the Paris agreement to the Well Below 2 Degrees target," Energy, Elsevier, vol. 166(C), pages 277-286.
    11. Liu, Yating & Chen, Bin, 2020. "Water-energy scarcity nexus risk in the national trade system based on multiregional input-output and network environ analyses," Applied Energy, Elsevier, vol. 268(C).
    12. Ricardo Amón & Tony Wong & Donald Kazama & Mike Maulhardt & Thomas Maulhardt & Christopher W. Simmons, 2018. "Assessment of the Industrial Tomato Processing Water Energy Nexus: A Case Study at a Processing Facility," Journal of Industrial Ecology, Yale University, vol. 22(4), pages 904-915, August.
    13. Wilson, Charlie, 2012. "Up-scaling, formative phases, and learning in the historical diffusion of energy technologies," Energy Policy, Elsevier, vol. 50(C), pages 81-94.
    14. Chu, Chu & Ritter, William & Sun, Xiaohui, 2019. "Spatial variances of water-energy nexus in China and its implications for provincial resource interdependence," Energy Policy, Elsevier, vol. 125(C), pages 487-502.
    15. Zhang, Yiyi & Hou, Shengren & Chen, Shaoqing & Long, Huihui & Liu, Jiefeng & Wang, Jiaqi, 2021. "Tracking flows and network dynamics of virtual water in electricity transmission across China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    16. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2015. "Exploring the water-energy nexus in Brazil: The electricity use for water supply," Energy, Elsevier, vol. 85(C), pages 415-432.
    17. Turner, Sean W.D. & Hejazi, Mohamad & Kim, Son H. & Clarke, Leon & Edmonds, Jae, 2017. "Climate impacts on hydropower and consequences for global electricity supply investment needs," Energy, Elsevier, vol. 141(C), pages 2081-2090.
    18. P.W. Gerbens-Leenes, 2016. "Energy for freshwater supply, use and disposal in the Netherlands: a case study of Dutch households," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 32(3), pages 398-411, May.
    19. De Stercke, Simon & Mijic, Ana & Buytaert, Wouter & Chaturvedi, Vaibhav, 2018. "Modelling the dynamic interactions between London’s water and energy systems from an end-use perspective," Applied Energy, Elsevier, vol. 230(C), pages 615-626.
    20. Chen, Pi-Cheng & Alvarado, Valeria & Hsu, Shu-Chien, 2018. "Water energy nexus in city and hinterlands: Multi-regional physical input-output analysis for Hong Kong and South China," Applied Energy, Elsevier, vol. 225(C), pages 986-997.
    21. Tomohiro Okadera & Winai Chaowiwat & Surajate Boonya-aroonnet & Danutawat Tipayarom & Wilasinee Yoochatchaval, 2016. "Global Water Scarcity in Relation to the International Energy Trade of Thailand," Journal of Industrial Ecology, Yale University, vol. 20(3), pages 484-493, June.
    22. Wang, Saige & Fath, Brian & Chen, Bin, 2019. "Energy–water nexus under energy mix scenarios using input–output and ecological network analyses," Applied Energy, Elsevier, vol. 233, pages 827-839.
    23. Arango-Aramburo, Santiago & Turner, Sean W.D. & Daenzer, Kathryn & Ríos-Ocampo, Juan Pablo & Hejazi, Mohamad I. & Kober, Tom & Álvarez-Espinosa, Andrés C. & Romero-Otalora, Germán D. & van der Zwaan, , 2019. "Climate impacts on hydropower in Colombia: A multi-model assessment of power sector adaptation pathways," Energy Policy, Elsevier, vol. 128(C), pages 179-188.
    24. Timothy Moss & Frank Hüesker, 2019. "Politicised nexus thinking in practice: Integrating urban wastewater utilities into regional energy markets," Urban Studies, Urban Studies Journal Limited, vol. 56(11), pages 2225-2241, August.
    25. Okadera, Tomohiro & Chontanawat, Jaruwan & Gheewala, Shabbir H., 2014. "Water footprint for energy production and supply in Thailand," Energy, Elsevier, vol. 77(C), pages 49-56.
    26. Kiziltan, Mustafa, 2021. "Water-energy nexus of Turkey’s municipalities: Evidence from spatial panel data analysis," Energy, Elsevier, vol. 226(C).
    27. Liao, Xiawei & Zhao, Xu & Liu, Wenfeng & Li, Ruoshui & Wang, Xiaoxi & Wang, Wenpeng & Tillotson, Martin R., 2020. "Comparing water footprint and water scarcity footprint of energy demand in China’s six megacities," Applied Energy, Elsevier, vol. 269(C).
    28. Mounir, Adil & Mascaro, Giuseppe & White, Dave D., 2019. "A metropolitan scale analysis of the impacts of future electricity mix alternatives on the water-energy nexus," Applied Energy, Elsevier, vol. 256(C).
    29. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.
    30. David Font Vivanco & Ranran Wang & Sebastiaan Deetman & Edgar Hertwich, 2019. "Unraveling the Nexus: Exploring the Pathways to Combined Resource Use," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 241-252, February.
    31. Liu, Yitong & Chen, Bin & Wei, Wendong & Shao, Ling & Li, Zhi & Jiang, Weizhong & Chen, Guoqian, 2020. "Global water use associated with energy supply, demand and international trade of China," Applied Energy, Elsevier, vol. 257(C).
    32. Jinyoung Lee & Hana Kim, 2021. "Regional dimensions of the South Korean water-energy nexus," Energy & Environment, , vol. 32(4), pages 722-736, June.
    33. Zhu, Yongnan & Ke, Jing & Wang, Jianhua & Liu, He & Jiang, Shan & Blum, Helcio & Zhao, Yong & He, Guohua & Meng, Yuan & Su, Jian, 2020. "Water transfer and losses embodied in the West–East electricity transmission project in China," Applied Energy, Elsevier, vol. 275(C).
    34. Shang, Yizi & Hei, Pengfei & Lu, Shibao & Shang, Ling & Li, Xiaofei & Wei, Yongping & Jia, Dongdong & Jiang, Dong & Ye, Yuntao & Gong, Jiaguo & Lei, Xiaohui & Hao, Mengmeng & Qiu, Yaqin & Liu, Jiahong, 2018. "China’s energy-water nexus: Assessing water conservation synergies of the total coal consumption cap strategy until 2050," Applied Energy, Elsevier, vol. 210(C), pages 643-660.
    35. Agrawal, Nikhil & Ahiduzzaman, Md & Kumar, Amit, 2018. "The development of an integrated model for the assessment of water and GHG footprints for the power generation sector," Applied Energy, Elsevier, vol. 216(C), pages 558-575.
    36. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    37. Guangzhao Chen & Xia Li & Xiaoping Liu & Yimin Chen & Xun Liang & Jiye Leng & Xiaocong Xu & Weilin Liao & Yue’an Qiu & Qianlian Wu & Kangning Huang, 2020. "Global projections of future urban land expansion under shared socioeconomic pathways," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    38. Zhang, Yiyi & Fang, Jiake & Wang, Saige & Yao, Huilu, 2020. "Energy-water nexus in electricity trade network: A case study of interprovincial electricity trade in China," Applied Energy, Elsevier, vol. 257(C).
    39. Zhang, Chao & Zhong, Lijin & Liang, Sai & Sanders, Kelly T. & Wang, Jiao & Xu, Ming, 2017. "Virtual scarce water embodied in inter-provincial electricity transmission in China," Applied Energy, Elsevier, vol. 187(C), pages 438-448.
    40. Lv, J. & Li, Y.P. & Huang, G.H. & Suo, C. & Mei, H. & Li, Y., 2020. "Quantifying the impact of water availability on China's energy system under uncertainties: A perceptive of energy-water nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    41. Tomoko Hasegawa & Petr Havlík & Stefan Frank & Amanda Palazzo & Hugo Valin, 2019. "Tackling food consumption inequality to fight hunger without pressuring the environment," Nature Sustainability, Nature, vol. 2(9), pages 826-833, September.
    42. Hiramatsu, Tomoru & Inoue, Hiroki & Kato, Yasuhiko, 2016. "Estimation of interregional input–output table using hybrid algorithm of the RAS method and real-coded genetic algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 385-402.
    43. Liao, Xiawei & Zhao, Xu & Hall, Jim W. & Guan, Dabo, 2018. "Categorising virtual water transfers through China’s electric power sector," Applied Energy, Elsevier, vol. 226(C), pages 252-260.
    44. Gao, Xuerui & Zhao, Yong & Lu, Shibao & Chen, Qianyun & An, Tingli & Han, Xinxueqi & Zhuo, La, 2019. "Impact of coal power production on sustainable water resources management in the coal-fired power energy bases of Northern China," Applied Energy, Elsevier, vol. 250(C), pages 821-833.
    45. de Queiroz, Anderson Rodrigo & Faria, Victor A.D. & Lima, Luana M.M. & Lima, José W.M., 2019. "Hydropower revenues under the threat of climate change in Brazil," Renewable Energy, Elsevier, vol. 133(C), pages 873-882.
    46. Kelly Levin & Benjamin Cashore & Steven Bernstein & Graeme Auld, 2012. "Overcoming the tragedy of super wicked problems: constraining our future selves to ameliorate global climate change," Policy Sciences, Springer;Society of Policy Sciences, vol. 45(2), pages 123-152, June.
    47. C. Wilson & A. Grubler & N. Bauer & V. Krey & K. Riahi, 2013. "Future capacity growth of energy technologies: are scenarios consistent with historical evidence?," Climatic Change, Springer, vol. 118(2), pages 381-395, May.
    48. Cornwall, Andrea & Jewkes, Rachel, 1995. "What is participatory research?," Social Science & Medicine, Elsevier, vol. 41(12), pages 1667-1676, December.
    49. Zhou, Nan & Zhang, Jingjing & Khanna, Nina & Fridley, David & Jiang, Shan & Liu, Xu, 2019. "Intertwined impacts of water, energy development, and carbon emissions in China," Applied Energy, Elsevier, vol. 238(C), pages 78-91.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Li & Yuhuan Zhao & Jiang Lin, 2020. "A review of the energy–carbon–water nexus: Concepts, research focuses, mechanisms, and methodologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
    2. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2021. "The energy-water nexus of China’s interprovincial and seasonal electric power transmission," Applied Energy, Elsevier, vol. 286(C).
    3. Elshkaki, Ayman, 2019. "Material-energy-water-carbon nexus in China’s electricity generation system up to 2050," Energy, Elsevier, vol. 189(C).
    4. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    5. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2019. "Water use of electricity technologies: A global meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    6. Chai, Li & Liao, Xiawei & Yang, Liu & Yan, Xianglin, 2018. "Assessing life cycle water use and pollution of coal-fired power generation in China using input-output analysis," Applied Energy, Elsevier, vol. 231(C), pages 951-958.
    7. Zhang, Wei & Valencia, Andrea & Gu, Lixing & Zheng, Qipeng P. & Chang, Ni-Bin, 2020. "Integrating emerging and existing renewable energy technologies into a community-scale microgrid in an energy-water nexus for resilience improvement," Applied Energy, Elsevier, vol. 279(C).
    8. Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    9. Chu, Chu & Ritter, William & Sun, Xiaohui, 2019. "Spatial variances of water-energy nexus in China and its implications for provincial resource interdependence," Energy Policy, Elsevier, vol. 125(C), pages 487-502.
    10. Wang, Xue-Chao & Jiang, Peng & Yang, Lan & Fan, Yee Van & Klemeš, Jiří Jaromír & Wang, Yutao, 2021. "Extended water-energy nexus contribution to environmentally-related sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    11. Feng, Cuiyang & Tang, Xu & Jin, Yi & Guo, Yuhua & Zhang, Xiaochuan, 2019. "Regional energy-water nexus based on structural path betweenness: A case study of Shanxi Province, China," Energy Policy, Elsevier, vol. 127(C), pages 102-112.
    12. Zhang, Yiyi & Wang, Jiaqi & Zhang, Linmei & Liu, Jiefeng & Zheng, Hanbo & Fang, Jiake & Hou, Shengren & Chen, Shaoqing, 2020. "Optimization of China’s electric power sector targeting water stress and carbon emissions," Applied Energy, Elsevier, vol. 271(C).
    13. Zhang, Haoran & Li, Ruixiong & Cai, Xingrui & Zheng, Chaoyue & Liu, Laibao & Liu, Maodian & Zhang, Qianru & Lin, Huiming & Chen, Long & Wang, Xuejun, 2022. "Do electricity flows hamper regional economic–environmental equity?," Applied Energy, Elsevier, vol. 326(C).
    14. Yan, Xia & Jie, Wu & Minjun, Shi & Shouyang, Wang & Zhuoying, Zhang, 2022. "China's regional imbalance in electricity demand, power and water pricing - From the perspective of electricity-related virtual water transmission," Energy, Elsevier, vol. 257(C).
    15. Zhang, Kai & Zhang, Yiyi & Xi, Shan & Liu, Jiefeng & Li, Jiashuo & Hou, Shengren & Chen, Bin, 2022. "Multi-objective optimization of energy-water nexus from spatial resource reallocation perspective in China," Applied Energy, Elsevier, vol. 314(C).
    16. Lv, J. & Li, Y.P. & Huang, G.H. & Suo, C. & Mei, H. & Li, Y., 2020. "Quantifying the impact of water availability on China's energy system under uncertainties: A perceptive of energy-water nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Liu, Yitong & Chen, Bin & Wei, Wendong & Shao, Ling & Li, Zhi & Jiang, Weizhong & Chen, Guoqian, 2020. "Global water use associated with energy supply, demand and international trade of China," Applied Energy, Elsevier, vol. 257(C).
    18. Molinos-Senante, María & Sala-Garrido, Ramón, 2018. "Evaluation of energy performance of drinking water treatment plants: Use of energy intensity and energy efficiency metrics," Applied Energy, Elsevier, vol. 229(C), pages 1095-1102.
    19. Zhu, Yongnan & Ke, Jing & Wang, Jianhua & Liu, He & Jiang, Shan & Blum, Helcio & Zhao, Yong & He, Guohua & Meng, Yuan & Su, Jian, 2020. "Water transfer and losses embodied in the West–East electricity transmission project in China," Applied Energy, Elsevier, vol. 275(C).
    20. Schlör, Holger & Venghaus, Sandra, 2022. "Measuring resilience in the food-energy-water nexus based on ethical values and trade relations," Applied Energy, Elsevier, vol. 323(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2851-:d:793208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.