IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v276y2020ics0306261920308795.html
   My bibliography  Save this article

A review of land use, visibility and public perception of renewable energy in the context of landscape impact

Author

Listed:
  • Ioannidis, Romanos
  • Koutsoyiannis, Demetris

Abstract

Landscape impacts associated with aesthetics have been a persistent cause of opposition against renewable energy projects. However, the current uncertainty over the spatial extents and the rationality of reported impacts impedes the development of optimal strategies for their mitigation. In this paper, a typology of landscape impacts is formed for hydroelectric, wind and solar energy through the review of three metrics that have been used extensively for impact-assessment: land use, visibility and public perception. Additionally, a generic landscape-impact ranking is formed, based on data from realized projects, demonstrating that hydroelectric energy has been the least impactful to landscapes per unit energy generation, followed by solar and wind energy, respectively. More importantly, the analysis highlights the strengths and weaknesses of each technology, in a landscape impact context, and demonstrates that, depending on landscape attributes, any technology can potentially be the least impactful. Finally, a holistic approach is proposed for future research and policy for the integration of renewable energy to landscapes, introducing the maximum utilization of the advantages of each technology as an additional strategy in an effort to expand beyond the mitigation of negative impacts.

Suggested Citation

  • Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
  • Handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920308795
    DOI: 10.1016/j.apenergy.2020.115367
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920308795
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115367?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kontogianni, Areti & Tourkolias, Christos & Skourtos, Michalis, 2013. "Renewables portfolio, individual preferences and social values towards RES technologies," Energy Policy, Elsevier, vol. 55(C), pages 467-476.
    2. Kelly-Richards, Sarah & Silber-Coats, Noah & Crootof, Arica & Tecklin, David & Bauer, Carl, 2017. "Governing the transition to renewable energy: A review of impacts and policy issues in the small hydropower boom," Energy Policy, Elsevier, vol. 101(C), pages 251-264.
    3. van Zalk, John & Behrens, Paul, 2018. "The spatial extent of renewable and non-renewable power generation: A review and meta-analysis of power densities and their application in the U.S," Energy Policy, Elsevier, vol. 123(C), pages 83-91.
    4. Shen, Shiran Victoria & Cain, Bruce E. & Hui, Iris, 2019. "Public receptivity in China towards wind energy generators: A survey experimental approach," Energy Policy, Elsevier, vol. 129(C), pages 619-627.
    5. Bidwell, David, 2013. "The role of values in public beliefs and attitudes towards commercial wind energy," Energy Policy, Elsevier, vol. 58(C), pages 189-199.
    6. Weiss, Günther, 2017. "Medial construction of energy landscapes in Germany," Energy Policy, Elsevier, vol. 109(C), pages 845-853.
    7. Wolsink, Maarten, 2007. "Planning of renewables schemes: Deliberative and fair decision-making on landscape issues instead of reproachful accusations of non-cooperation," Energy Policy, Elsevier, vol. 35(5), pages 2692-2704, May.
    8. Prados, María-José, 2010. "Renewable energy policy and landscape management in Andalusia, Spain: The facts," Energy Policy, Elsevier, vol. 38(11), pages 6900-6909, November.
    9. Scherhaufer, Patrick & Höltinger, Stefan & Salak, Boris & Schauppenlehner, Thomas & Schmidt, Johannes, 2017. "Patterns of acceptance and non-acceptance within energy landscapes: A case study on wind energy expansion in Austria," Energy Policy, Elsevier, vol. 109(C), pages 863-870.
    10. Llewellyn, David H. & Rohse, Melanie & Day, Rosie & Fyfe, Hamish, 2017. "Evolving energy landscapes in the South Wales Valleys: Exploring community perception and participation," Energy Policy, Elsevier, vol. 108(C), pages 818-828.
    11. Nathan Nunn & Diego Puga, 2012. "Ruggedness: The Blessing of Bad Geography in Africa," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 20-36, February.
    12. Chiabrando, Roberto & Fabrizio, Enrico & Garnero, Gabriele, 2009. "The territorial and landscape impacts of photovoltaic systems: Definition of impacts and assessment of the glare risk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2441-2451, December.
    13. Betakova, Vendula & Vojar, Jiri & Sklenicka, Petr, 2015. "Wind turbines location: How many and how far?," Applied Energy, Elsevier, vol. 151(C), pages 23-31.
    14. G.-Fivos Sargentis & Panayiotis Dimitriadis & Romanos Ioannidis & Theano Iliopoulou & Demetris Koutsoyiannis, 2019. "Stochastic Evaluation of Landscapes Transformed by Renewable Energy Installations and Civil Works," Energies, MDPI, vol. 12(14), pages 1-13, July.
    15. George C. Ledec & Kennan W. Rapp & Roberto G. Aiello, 2011. "Greening the Wind : Environmental and Social Considerations for Wind Power Development," World Bank Publications - Books, The World Bank Group, number 2388, December.
    16. John Barry & Geraint Ellis & Clive Robinson, 2008. "Cool Rationalities and Hot Air: A Rhetorical Approach to Understanding Debates on Renewable Energy," Global Environmental Politics, MIT Press, vol. 8(2), pages 67-98, May.
    17. Martínez, E. & Sanz, F. & Pellegrini, S. & Jiménez, E. & Blanco, J., 2009. "Life cycle assessment of a multi-megawatt wind turbine," Renewable Energy, Elsevier, vol. 34(3), pages 667-673.
    18. Fernandez-Jimenez, L. Alfredo & Mendoza-Villena, Montserrat & Zorzano-Santamaria, Pedro & Garcia-Garrido, Eduardo & Lara-Santillan, Pedro & Zorzano-Alba, Enrique & Falces, Alberto, 2015. "Site selection for new PV power plants based on their observability," Renewable Energy, Elsevier, vol. 78(C), pages 7-15.
    19. Jobert, Arthur & Laborgne, Pia & Mimler, Solveig, 2007. "Local acceptance of wind energy: Factors of success identified in French and German case studies," Energy Policy, Elsevier, vol. 35(5), pages 2751-2760, May.
    20. Molnarova, Kristina & Sklenicka, Petr & Stiborek, Jiri & Svobodova, Kamila & Salek, Miroslav & Brabec, Elizabeth, 2012. "Visual preferences for wind turbines: Location, numbers and respondent characteristics," Applied Energy, Elsevier, vol. 92(C), pages 269-278.
    21. van der Horst, Dan, 2007. "NIMBY or not? Exploring the relevance of location and the politics of voiced opinions in renewable energy siting controversies," Energy Policy, Elsevier, vol. 35(5), pages 2705-2714, May.
    22. Kontogianni, A. & Tourkolias, Ch. & Skourtos, M. & Damigos, D., 2014. "Planning globally, protesting locally: Patterns in community perceptions towards the installation of wind farms," Renewable Energy, Elsevier, vol. 66(C), pages 170-177.
    23. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    24. Voorspools, Kris R. & Brouwers, Els A. & D'haeseleer, William D., 2000. "Energy content and indirect greenhouse gas emissions embedded in [`]emission-free' power plants: results for the Low Countries," Applied Energy, Elsevier, vol. 67(3), pages 307-330, November.
    25. Boccard, Nicolas, 2009. "Capacity factor of wind power realized values vs. estimates," Energy Policy, Elsevier, vol. 37(7), pages 2679-2688, July.
    26. Sklenicka, Petr & Zouhar, Jan, 2018. "Predicting the visual impact of onshore wind farms via landscape indices: A method for objectivizing planning and decision processes," Applied Energy, Elsevier, vol. 209(C), pages 445-454.
    27. West, J. & Bailey, I. & Winter, M., 2010. "Renewable energy policy and public perceptions of renewable energy: A cultural theory approach," Energy Policy, Elsevier, vol. 38(10), pages 5739-5748, October.
    28. Gagnon, Luc & Belanger, Camille & Uchiyama, Yohji, 2002. "Life-cycle assessment of electricity generation options: The status of research in year 2001," Energy Policy, Elsevier, vol. 30(14), pages 1267-1278, November.
    29. Hurtado, Juan Pablo & Fernández, Joaquín & Parrondo, Jorge L. & Blanco, Eduardo, 2004. "Spanish method of visual impact evaluation in wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(5), pages 483-491, October.
    30. Wolsink, Maarten, 2000. "Wind power and the NIMBY-myth: institutional capacity and the limited significance of public support," Renewable Energy, Elsevier, vol. 21(1), pages 49-64.
    31. Cohen, Jed J. & Reichl, Johannes & Schmidthaler, Michael, 2014. "Re-focussing research efforts on the public acceptance of energy infrastructure: A critical review," Energy, Elsevier, vol. 76(C), pages 4-9.
    32. Renée M. De Waal & Sven Stremke, 2014. "Energy Transition: Missed Opportunities and Emerging Challenges for Landscape Planning and Designing," Sustainability, MDPI, vol. 6(7), pages 1-30, July.
    33. Gagnon, Luc & van de Vate, Joop F., 1997. "Greenhouse gas emissions from hydropower : The state of research in 1996," Energy Policy, Elsevier, vol. 25(1), pages 7-13, January.
    34. Torres Sibille, Ana del Carmen & Cloquell-Ballester, Víctor-Andrés & Cloquell-Ballester, Vicente-Agustín & Darton, Richard, 2009. "Development and validation of a multicriteria indicator for the assessment of objective aesthetic impact of wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 40-66, January.
    35. Ferrario, Viviana & Castiglioni, Benedetta, 2017. "Visibility/invisibility in the 'making' of energy landscape. Strategies and policies in the hydropower development of the Piave river (Italian Eastern Alps)," Energy Policy, Elsevier, vol. 108(C), pages 829-835.
    36. Langer, Katharina & Decker, Thomas & Roosen, Jutta & Menrad, Klaus, 2016. "A qualitative analysis to understand the acceptance of wind energy in Bavaria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 248-259.
    37. Fthenakis, Vasilis & Kim, Hyung Chul, 2009. "Land use and electricity generation: A life-cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1465-1474, August.
    38. Sovacool, Benjamin K., 2009. "The cultural barriers to renewable energy and energy efficiency in the United States," Technology in Society, Elsevier, vol. 31(4), pages 365-373.
    39. Robert Horbaty & Stefanie Huber & Geraint Ellis, 2012. "Large-scale wind deployment, social acceptance," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 1(2), pages 194-205, September.
    40. Maria A. Petrova, 2013. "NIMBYism revisited: public acceptance of wind energy in the United States," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 4(6), pages 575-601, November.
    41. Kaldellis, J.K. & Kapsali, M. & Katsanou, Ev., 2012. "Renewable energy applications in Greece—What is the public attitude?," Energy Policy, Elsevier, vol. 42(C), pages 37-48.
    42. Frantál, Bohumil & Van der Horst, Dan & Martinát, Stanislav & Schmitz, Serge & Teschner, Na´ama & Silva, Luis & Golobic, Mojca & Roth, Michael, 2018. "Spatial targeting, synergies and scale: Exploring the criteria of smart practices for siting renewable energy projects," Energy Policy, Elsevier, vol. 120(C), pages 85-93.
    43. Sütterlin, Bernadette & Siegrist, Michael, 2017. "Public acceptance of renewable energy technologies from an abstract versus concrete perspective and the positive imagery of solar power," Energy Policy, Elsevier, vol. 106(C), pages 356-366.
    44. Jones, Christopher R. & Eiser, J. Richard, 2009. "Identifying predictors of attitudes towards local onshore wind development with reference to an English case study," Energy Policy, Elsevier, vol. 37(11), pages 4604-4614, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ela Romov & Na’ama Teschner, 2022. "A Place under the Sun: Planning, Landscape and Participation in a Case of a Solar Powerplant in the Israeli Desert," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
    2. Maciej Nowak & Viktoriya Pantyley & Małgorzata Blaszke & Liudmila Fakeyeva & Roman Lozynskyy & Alexandru-Ionut Petrisor, 2023. "Spatial Planning at the National Level: Comparison of Legal and Strategic Instruments in a Case Study of Belarus, Ukraine, and Poland," Land, MDPI, vol. 12(7), pages 1-20, July.
    3. Chen, Qi & Li, Xinyuan & Zhang, Zhengjia & Zhou, Chao & Guo, Zhiling & Liu, Zhengguang & Zhang, Haoran, 2023. "Remote sensing of photovoltaic scenarios: Techniques, applications and future directions," Applied Energy, Elsevier, vol. 333(C).
    4. G.-Fivos Sargentis & Theano Iliopoulou & Stavroula Sigourou & Panayiotis Dimitriadis & Demetris Koutsoyiannis, 2020. "Evolution of Clustering Quantified by a Stochastic Method—Case Studies on Natural and Human Social Structures," Sustainability, MDPI, vol. 12(19), pages 1-22, September.
    5. Guillot, Victor & Siggini, Gildas & Assoumou, Edi, 2023. "Interactions between land and grid development in the transition to a decarbonized European power system," Energy Policy, Elsevier, vol. 175(C).
    6. Amaury Chesné & Romanos Ioannidis, 2024. "An Investigation of the Perception of Neoclassical, Eclectic, Modernist, and Postmodern Architecture within Different Urban Landscapes: Athens vs. Paris," Land, MDPI, vol. 13(3), pages 1-29, March.
    7. Kałuża, Tomasz & Hämmerling, Mateusz & Zawadzki, Paweł & Czekała, Wojciech & Kasperek, Robert & Sojka, Mariusz & Mokwa, Marian & Ptak, Mariusz & Szkudlarek, Arkadiusz & Czechlowski, Mirosław & Dach, J, 2022. "The hydropower sector in Poland: Barriers and the outlook for the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    8. Aikaterini Roxani & Athanasios Zisos & Georgia-Konstantina Sakki & Andreas Efstratiadis, 2023. "Multidimensional Role of Agrovoltaics in Era of EU Green Deal: Current Status and Analysis of Water–Energy–Food–Land Dependencies," Land, MDPI, vol. 12(5), pages 1-20, May.
    9. Rodríguez-Segura, Francisco Javier & Osorio-Aravena, Juan Carlos & Frolova, Marina & Terrados-Cepeda, Julio & Muñoz-Cerón, Emilio, 2023. "Social acceptance of renewable energy development in southern Spain: Exploring tendencies, locations, criteria and situations," Energy Policy, Elsevier, vol. 173(C).
    10. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Beyond the triangle of renewable energy acceptance: The five dimensions of domestic hydrogen acceptance," Applied Energy, Elsevier, vol. 324(C).
    11. G.-Fivos Sargentis & Paraskevi Siamparina & Georgia-Konstantina Sakki & Andreas Efstratiadis & Michalis Chiotinis & Demetris Koutsoyiannis, 2021. "Agricultural Land or Photovoltaic Parks? The Water–Energy–Food Nexus and Land Development Perspectives in the Thessaly Plain, Greece," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    12. G.-Fivos Sargentis & Demetris Koutsoyiannis, 2023. "The Function of Money in Water–Energy–Food and Land Nexus," Land, MDPI, vol. 12(3), pages 1-18, March.
    13. G.-Fivos Sargentis & Nikos D. Lagaros & Giuseppe Leonardo Cascella & Demetris Koutsoyiannis, 2022. "Threats in Water–Energy–Food–Land Nexus by the 2022 Military and Economic Conflict," Land, MDPI, vol. 11(9), pages 1-19, September.
    14. Chen, Yi-kuang & Kirkerud, Jon Gustav & Bolkesjø, Torjus Folsland, 2022. "Balancing GHG mitigation and land-use conflicts: Alternative Northern European energy system scenarios," Applied Energy, Elsevier, vol. 310(C).
    15. Kenawi, M.S. & Alfredsen, K. & Stürzer, L.S. & Sandercock, B.K. & Bakken, T.H., 2023. "High-resolution mapping of land use changes in Norwegian hydropower systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    16. Edita Tverijonaite & Anna Dóra Sæþórsdóttir, 2024. "Hydro, Wind, and Geothermal: Navigating the Compatibility of Renewable Energy Infrastructure with Tourism," Tourism and Hospitality, MDPI, vol. 5(1), pages 1-16, January.
    17. Alphan, H., 2021. "Modelling potential visibility of wind turbines: A geospatial approach for planning and impact mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    18. Przemysław Śleszyński, 2021. "Multi-Item Assessment of Physiognomic Diversity of Geocomplexes as a Comprehensive Method of Visual-Aesthetic Landscape Assessment," Geographies, MDPI, vol. 1(1), pages 1-25, March.
    19. Oudes, D. & Stremke, S., 2021. "Next generation solar power plants? A comparative analysis of frontrunner solar landscapes in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    20. Athanasios Zisos & Georgia-Konstantina Sakki & Andreas Efstratiadis, 2023. "Mixing Renewable Energy with Pumped Hydropower Storage: Design Optimization under Uncertainty and Other Challenges," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    21. J. Sadhik Basha & Tahereh Jafary & Ranjit Vasudevan & Jahanzeb Khan Bahadur & Muna Al Ajmi & Aadil Al Neyadi & Manzoore Elahi M. Soudagar & MA Mujtaba & Abrar Hussain & Waqar Ahmed & Kiran Shahapurkar, 2021. "Potential of Utilization of Renewable Energy Technologies in Gulf Countries," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    22. Ioannidis, R. & Mamassis, N. & Efstratiadis, A. & Koutsoyiannis, D., 2022. "Reversing visibility analysis: Towards an accelerated a priori assessment of landscape impacts of renewable energy projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    23. Astrid Buchmayr & Luc Van Ootegem & Jo Dewulf & Elsy Verhofstadt, 2021. "Understanding Attitudes towards Renewable Energy Technologies and the Effect of Local Experiences," Energies, MDPI, vol. 14(22), pages 1-23, November.
    24. Rebecca Peters & Jürgen Berlekamp & Ana Lucía & Vittoria Stefani & Klement Tockner & Christiane Zarfl, 2021. "Integrated Impact Assessment for Sustainable Hydropower Planning in the Vjosa Catchment (Greece, Albania)," Sustainability, MDPI, vol. 13(3), pages 1-18, February.
    25. Daniele La Rosa & Zita Izakovičová, 2022. "Visibility Analysis to Enhance Landscape Protection: A Proposal of Planning Norms and Regulations for Slovakia," Land, MDPI, vol. 11(7), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannidis, R. & Mamassis, N. & Efstratiadis, A. & Koutsoyiannis, D., 2022. "Reversing visibility analysis: Towards an accelerated a priori assessment of landscape impacts of renewable energy projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    3. Salak, B. & Lindberg, K. & Kienast, F. & Hunziker, M., 2021. "How landscape-technology fit affects public evaluations of renewable energy infrastructure scenarios. A hybrid choice model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Schumacher, K. & Krones, F. & McKenna, R. & Schultmann, F., 2019. "Public acceptance of renewable energies and energy autonomy: A comparative study in the French, German and Swiss Upper Rhine region," Energy Policy, Elsevier, vol. 126(C), pages 315-332.
    5. Windemer, Rebecca, 2023. "Acceptance should not be assumed. How the dynamics of social acceptance changes over time, impacting onshore wind repowering," Energy Policy, Elsevier, vol. 173(C).
    6. Langer, Katharina & Decker, Thomas & Roosen, Jutta & Menrad, Klaus, 2016. "A qualitative analysis to understand the acceptance of wind energy in Bavaria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 248-259.
    7. Kontogianni, A. & Tourkolias, Ch. & Skourtos, M. & Damigos, D., 2014. "Planning globally, protesting locally: Patterns in community perceptions towards the installation of wind farms," Renewable Energy, Elsevier, vol. 66(C), pages 170-177.
    8. Vuichard, Pascal & Stauch, Alexander & Wüstenhagen, Rolf, 2021. "Keep it local and low-key: Social acceptance of alpine solar power projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    9. Aaen, Sara Bjørn & Kerndrup, Søren & Lyhne, Ivar, 2016. "Beyond public acceptance of energy infrastructure: How citizens make sense and form reactions by enacting networks of entities in infrastructure development," Energy Policy, Elsevier, vol. 96(C), pages 576-586.
    10. Astrid Buchmayr & Luc Van Ootegem & Jo Dewulf & Elsy Verhofstadt, 2021. "Understanding Attitudes towards Renewable Energy Technologies and the Effect of Local Experiences," Energies, MDPI, vol. 14(22), pages 1-23, November.
    11. Caporale, Diana & Sangiorgio, Valentino & Amodio, Alessandro & De Lucia, Caterina, 2020. "Multi-criteria and focus group analysis for social acceptance of wind energy," Energy Policy, Elsevier, vol. 140(C).
    12. Bevk, Tadej & Golobič, Mojca, 2020. "Contentious eye-catchers: Perceptions of landscapes changed by solar power plants in Slovenia," Renewable Energy, Elsevier, vol. 152(C), pages 999-1010.
    13. Landeta-Manzano, Beñat & Arana-Landín, Germán & Calvo, Pilar M. & Heras-Saizarbitoria, Iñaki, 2018. "Wind energy and local communities: A manufacturer’s efforts to gain acceptance," Energy Policy, Elsevier, vol. 121(C), pages 314-324.
    14. Hübner, Gundula & Leschinger, Valentin & Müller, Florian J.Y. & Pohl, Johannes, 2023. "Broadening the social acceptance of wind energy – An Integrated Acceptance Model," Energy Policy, Elsevier, vol. 173(C).
    15. Carlisle, Juliet E. & Kane, Stephanie L. & Solan, David & Bowman, Madelaine & Joe, Jeffrey C., 2015. "Public attitudes regarding large-scale solar energy development in the U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 835-847.
    16. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Beyond the triangle of renewable energy acceptance: The five dimensions of domestic hydrogen acceptance," Applied Energy, Elsevier, vol. 324(C).
    17. John Colton & Kenneth Corscadden & Stewart Fast & Monica Gattinger & Joel Gehman & Martha Hall Findlay & Dylan Morgan & Judith Sayers & Jennifer Winter & Adonis Yatchew, 2016. "Energy Projects, Social Licence, Public Acceptance and Regulatory Systems in Canada: A White Paper," SPP Research Papers, The School of Public Policy, University of Calgary, vol. 9(20), May.
    18. Simón, Xavier & Copena, Damián & Montero, María, 2019. "Strong wind development with no community participation. The case of Galicia (1995–2009)," Energy Policy, Elsevier, vol. 133(C).
    19. Scognamiglio, Alessandra, 2016. "‘Photovoltaic landscapes’: Design and assessment. A critical review for a new transdisciplinary design vision," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 629-661.
    20. Langer, Katharina & Decker, Thomas & Menrad, Klaus, 2017. "Public participation in wind energy projects located in Germany: Which form of participation is the key to acceptance?," Renewable Energy, Elsevier, vol. 112(C), pages 63-73.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920308795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.