IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i14p2817-d250566.html
   My bibliography  Save this article

Stochastic Evaluation of Landscapes Transformed by Renewable Energy Installations and Civil Works

Author

Listed:
  • G.-Fivos Sargentis

    (School of Civil Engineering, Laboratory of Hydrology and Water Resources Development, National Technical University of Athens, Heroon Polytechneiou 9, Zographou 157 80, Greece)

  • Panayiotis Dimitriadis

    (School of Civil Engineering, Laboratory of Hydrology and Water Resources Development, National Technical University of Athens, Heroon Polytechneiou 9, Zographou 157 80, Greece)

  • Romanos Ioannidis

    (School of Civil Engineering, Laboratory of Hydrology and Water Resources Development, National Technical University of Athens, Heroon Polytechneiou 9, Zographou 157 80, Greece)

  • Theano Iliopoulou

    (School of Civil Engineering, Laboratory of Hydrology and Water Resources Development, National Technical University of Athens, Heroon Polytechneiou 9, Zographou 157 80, Greece)

  • Demetris Koutsoyiannis

    (School of Civil Engineering, Laboratory of Hydrology and Water Resources Development, National Technical University of Athens, Heroon Polytechneiou 9, Zographou 157 80, Greece)

Abstract

Renewable energy (RE) installations and civil works are beneficial in terms of sustainability, but a considerable amount of space in the landscape is required in order to harness this energy. In contemporary environmental theory the landscape is considered an environmental parameter and the transformation of the landscape by RE works has received increasing attention by the scientific community and affected societies. This research develops a novel computational stochastic tool the 2D Climacogram (2D-C) that allows the analysis and comparison of images of landscapes, both original and transformed by RE works. This is achieved by a variability characterization of the grayscale intensity of 2D images. A benchmark analysis is performed for art paintings in order to evaluate the properties of the 2D-C for image analysis, and the change in variability among images. Extensive applications are performed for landscapes transformed by RE works. Results show that the 2D-C is able to quantify the changes in variability of the image features, which may prove useful in the landscape impact assessment of large-scale engineering works.

Suggested Citation

  • G.-Fivos Sargentis & Panayiotis Dimitriadis & Romanos Ioannidis & Theano Iliopoulou & Demetris Koutsoyiannis, 2019. "Stochastic Evaluation of Landscapes Transformed by Renewable Energy Installations and Civil Works," Energies, MDPI, vol. 12(14), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2817-:d:250566
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/14/2817/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/14/2817/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hayek, F. A., 2012. "Hayek on Hayek," University of Chicago Press Economics Books, University of Chicago Press, edition 1, number 9780226321202 edited by Kresge, Stephen & Wenar, Leif, September.
    2. Hurtado, Juan Pablo & Fernández, Joaquín & Parrondo, Jorge L. & Blanco, Eduardo, 2004. "Spanish method of visual impact evaluation in wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(5), pages 483-491, October.
    3. Wolsink, Maarten, 2007. "Planning of renewables schemes: Deliberative and fair decision-making on landscape issues instead of reproachful accusations of non-cooperation," Energy Policy, Elsevier, vol. 35(5), pages 2692-2704, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. G.-Fivos Sargentis & Nikos D. Lagaros & Giuseppe Leonardo Cascella & Demetris Koutsoyiannis, 2022. "Threats in Water–Energy–Food–Land Nexus by the 2022 Military and Economic Conflict," Land, MDPI, vol. 11(9), pages 1-19, September.
    2. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    3. G.-Fivos Sargentis & Theano Iliopoulou & Stavroula Sigourou & Panayiotis Dimitriadis & Demetris Koutsoyiannis, 2020. "Evolution of Clustering Quantified by a Stochastic Method—Case Studies on Natural and Human Social Structures," Sustainability, MDPI, vol. 12(19), pages 1-22, September.
    4. Xinhui Fei & Yanqin Zhang & Deyi Kong & Qitang Huang & Minhua Wang & Jianwen Dong, 2023. "Quantitative Model Study of the Psychological Recovery Benefit of Landscape Environment Based on Eye Movement Tracking Technology," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    5. G.-Fivos Sargentis & Demetris Koutsoyiannis & Andreas Angelakis & John Christy & Anastasios A. Tsonis, 2022. "Environmental Determinism vs. Social Dynamics: Prehistorical and Historical Examples," World, MDPI, vol. 3(2), pages 1-32, June.
    6. G.-Fivos Sargentis & Paraskevi Siamparina & Georgia-Konstantina Sakki & Andreas Efstratiadis & Michalis Chiotinis & Demetris Koutsoyiannis, 2021. "Agricultural Land or Photovoltaic Parks? The Water–Energy–Food Nexus and Land Development Perspectives in the Thessaly Plain, Greece," Sustainability, MDPI, vol. 13(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    2. William R. Morgan, 2023. "Finance Must Be Defended: Cybernetics, Neoliberalism and Environmental, Social, and Governance (ESG)," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    3. Kumar, Indraneel & Tyner, Wallace E. & Sinha, Kumares C., 2016. "Input–output life cycle environmental assessment of greenhouse gas emissions from utility scale wind energy in the United States," Energy Policy, Elsevier, vol. 89(C), pages 294-301.
    4. Etienne Farvaque & Alexander Mihailov & Alireza Naghavi, 2018. "The Grand Experiment of Communism: Discovering the Trade-Off between Equality and Efficiency," Journal of Institutional and Theoretical Economics (JITE), Mohr Siebeck, Tübingen, vol. 174(4), pages 707-742, December.
    5. Vassiliades, C. & Savvides, A. & Buonomano, A., 2022. "Building integration of active solar energy systems for façades renovation in the urban fabric: Effects on the thermal comfort in outdoor public spaces in Naples and Thessaloniki," Renewable Energy, Elsevier, vol. 190(C), pages 30-47.
    6. Ahmad Adeel & Bruno Notteboom & Ansar Yasar & Kris Scheerlinck & Jeroen Stevens, 2021. "Sustainable Streetscape and Built Environment Designs around BRT Stations: A Stated Choice Experiment Using 3D Visualizations," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    7. József Kádár & Martina Pilloni & Tareq Abu Hamed, 2023. "A Survey of Renewable Energy, Climate Change, and Policy Awareness in Israel: The Long Path for Citizen Participation in the National Renewable Energy Transition," Energies, MDPI, vol. 16(5), pages 1-16, February.
    8. Arnaud Z. Dragicevic, 2019. "Market Coordination Under Non-Equilibrium Dynamics," Networks and Spatial Economics, Springer, vol. 19(3), pages 697-715, September.
    9. Taner Akan & Tim Solle, 2022. "Do macroeconomic and financial governance matter? Evidence from Germany, 1950–2019," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(4), pages 993-1045, October.
    10. Haggett, Claire, 2011. "Understanding public responses to offshore wind power," Energy Policy, Elsevier, vol. 39(2), pages 503-510, February.
    11. David Rudolph & Claire Haggett & Mhairi Aitken, 2018. "Community benefits from offshore renewables: The relationship between different understandings of impact, community, and benefit," Environment and Planning C, , vol. 36(1), pages 92-117, February.
    12. Kienast, Felix & Frick, Jacqueline & van Strien, Maarten J. & Hunziker, Marcel, 2015. "The Swiss Landscape Monitoring Program – A comprehensive indicator set to measure landscape change," Ecological Modelling, Elsevier, vol. 295(C), pages 136-150.
    13. Grilli, Gianluca & Fratini, Roberto & Marone, Enrico & Sacchelli, Sandro, 2020. "A spatial-based tool for the analysis of payments for forest ecosystem services related to hydrogeological protection," Forest Policy and Economics, Elsevier, vol. 111(C).
    14. Moravec, David & Barták, Vojtěch & Puš, Vladimír & Wild, Jan, 2018. "Wind turbine impact on near-ground air temperature," Renewable Energy, Elsevier, vol. 123(C), pages 627-633.
    15. Gorsevski, Pece V. & Cathcart, Steven C. & Mirzaei, Golrokh & Jamali, Mohsin M. & Ye, Xinyue & Gomezdelcampo, Enrique, 2013. "A group-based spatial decision support system for wind farm site selection in Northwest Ohio," Energy Policy, Elsevier, vol. 55(C), pages 374-385.
    16. Cousse, Julia, 2021. "Still in love with solar energy? Installation size, affect, and the social acceptance of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Martin Mabunda Baluku & Julius Fred Kikooma & Edward Bantu & Kathleen Otto, 2018. "Psychological capital and entrepreneurial outcomes: the moderating role of social competences of owners of micro-enterprises in East Africa," Journal of Global Entrepreneurship Research, Springer;UNESCO Chair in Entrepreneurship, vol. 8(1), pages 1-23, December.
    18. Pepermans, Yves & Loots, Ilse, 2013. "Wind farm struggles in Flanders fields: A sociological perspective," Energy Policy, Elsevier, vol. 59(C), pages 321-328.
    19. Dessi, F. & Ariccio, S. & Albers, T. & Alves, S. & Ludovico, N. & Bonaiuto, M., 2022. "Sustainable technology acceptability: Mapping technological, contextual, and social-psychological determinants of EU stakeholders’ biofuel acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    20. Hindmarsh, Richard & Alidoust, Sara, 2019. "Rethinking Australian CSG transitions in participatory contexts of local social conflict, community engagement, and shifts towards cleaner energy," Energy Policy, Elsevier, vol. 132(C), pages 272-282.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2817-:d:250566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.