IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v239y2019icp560-580.html
   My bibliography  Save this article

Impacts of heat sector transformation on Germany’s power system through increased use of power-to-heat

Author

Listed:
  • Bloess, Andreas

Abstract

The heating sector accounts for a major part of Germanys energy consumption and carbon emissions. Both, renewable energy and power-to-heat, could help decarbonizing it. To analyse the impacts of power-to-heat and heat storage on power system development, a dynamic long-term power sector investment and dispatch model for Europe is extended to also include German individual and district heating. Findings show that power-to-heat causes a substantial rise in electricity demand, even if heat energy demand decreases strongly. Power generation from wind and natural gas accordingly increase. Power-to-gas capacity increasingly substitutes battery storage. Combined heat and power does not play a role in future scenarios.

Suggested Citation

  • Bloess, Andreas, 2019. "Impacts of heat sector transformation on Germany’s power system through increased use of power-to-heat," Applied Energy, Elsevier, vol. 239(C), pages 560-580.
  • Handle: RePEc:eee:appene:v:239:y:2019:i:c:p:560-580
    DOI: 10.1016/j.apenergy.2019.01.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919301023
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.01.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Clemens Gerbaulet & Casimir Lorenz, 2017. "dynELMOD: A Dynamic Investment and Dispatch Model for the Future European Electricity Market," Data Documentation 88, DIW Berlin, German Institute for Economic Research.
    2. Li, Jinghua & Fang, Jiakun & Zeng, Qing & Chen, Zhe, 2016. "Optimal operation of the integrated electrical and heating systems to accommodate the intermittent renewable sources," Applied Energy, Elsevier, vol. 167(C), pages 244-254.
    3. Merkel, Erik & Fehrenbach, Daniel & McKenna, Russell & Fichtner, Wolf, 2014. "Modelling decentralised heat supply: An application and methodological extension in TIMES," Energy, Elsevier, vol. 73(C), pages 592-605.
    4. Kiviluoma, Juha & Meibom, Peter, 2010. "Influence of wind power, plug-in electric vehicles, and heat storages on power system investments," Energy, Elsevier, vol. 35(3), pages 1244-1255.
    5. Abdollahi, Elnaz & Wang, Haichao & Lahdelma, Risto, 2016. "An optimization method for multi-area combined heat and power production with power transmission network," Applied Energy, Elsevier, vol. 168(C), pages 248-256.
    6. Nielsen, Maria Grønnegaard & Morales, Juan Miguel & Zugno, Marco & Pedersen, Thomas Engberg & Madsen, Henrik, 2016. "Economic valuation of heat pumps and electric boilers in the Danish energy system," Applied Energy, Elsevier, vol. 167(C), pages 189-200.
    7. Patteeuw, Dieter & Bruninx, Kenneth & Arteconi, Alessia & Delarue, Erik & D’haeseleer, William & Helsen, Lieve, 2015. "Integrated modeling of active demand response with electric heating systems coupled to thermal energy storage systems," Applied Energy, Elsevier, vol. 151(C), pages 306-319.
    8. Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.
    9. Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Xu, Xiandong & Yu, Xiaodan, 2016. "Optimal day-ahead scheduling of integrated urban energy systems," Applied Energy, Elsevier, vol. 180(C), pages 1-13.
    10. Florian Leuthold & Hannes Weigt & Christian Hirschhausen, 2012. "A Large-Scale Spatial Optimization Model of the European Electricity Market," Networks and Spatial Economics, Springer, vol. 12(1), pages 75-107, March.
    11. Ashfaq, Asad & Kamali, Zulqarnain Haider & Agha, Mujtaba Hassan & Arshid, Hirra, 2017. "Heat coupling of the pan-European vs. regional electrical grid with excess renewable energy," Energy, Elsevier, vol. 122(C), pages 363-377.
    12. Pensini, Alessandro & Rasmussen, Claus N. & Kempton, Willett, 2014. "Economic analysis of using excess renewable electricity to displace heating fuels," Applied Energy, Elsevier, vol. 131(C), pages 530-543.
    13. Zerrahn, Alexander & Schill, Wolf-Peter & Kemfert, Claudia, 2018. "On the economics of electrical storage for variable renewable energy sources," European Economic Review, Elsevier, vol. 108(C), pages 259-279.
    14. Kondziella, Hendrik & Bruckner, Thomas, 2016. "Flexibility requirements of renewable energy based electricity systems – a review of research results and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 10-22.
    15. Christian von Hirschhausen, 2014. "The German Energiewend - An Introduction," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    16. Arteconi, Alessia & Patteeuw, Dieter & Bruninx, Kenneth & Delarue, Erik & D’haeseleer, William & Helsen, Lieve, 2016. "Active demand response with electric heating systems: Impact of market penetration," Applied Energy, Elsevier, vol. 177(C), pages 636-648.
    17. Dodds, Paul E., 2014. "Integrating housing stock and energy system models as a strategy to improve heat decarbonisation assessments," Applied Energy, Elsevier, vol. 132(C), pages 358-369.
    18. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
    19. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
    20. Waite, Michael & Modi, Vijay, 2014. "Potential for increased wind-generated electricity utilization using heat pumps in urban areas," Applied Energy, Elsevier, vol. 135(C), pages 634-642.
    21. Fehrenbach, Daniel & Merkel, Erik & McKenna, Russell & Karl, Ute & Fichtner, Wolf, 2014. "On the economic potential for electric load management in the German residential heating sector – An optimising energy system model approach," Energy, Elsevier, vol. 71(C), pages 263-276.
    22. Oluleye, Gbemi & Allison, John & Hawker, Graeme & Kelly, Nick & Hawkes, Adam D., 2018. "A two-step optimization model for quantifying the flexibility potential of power-to-heat systems in dwellings," Applied Energy, Elsevier, vol. 228(C), pages 215-228.
    23. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    24. Østergaard, Poul Alberg & Lund, Henrik, 2011. "A renewable energy system in Frederikshavn using low-temperature geothermal energy for district heating," Applied Energy, Elsevier, vol. 88(2), pages 479-487, February.
    25. Barton, John & Huang, Sikai & Infield, David & Leach, Matthew & Ogunkunle, Damiete & Torriti, Jacopo & Thomson, Murray, 2013. "The evolution of electricity demand and the role for demand side participation, in buildings and transport," Energy Policy, Elsevier, vol. 52(C), pages 85-102.
    26. repec:aen:journl:eeep3_2_01intro is not listed on IDEAS
    27. Hake, Jürgen-Friedrich & Fischer, Wolfgang & Venghaus, Sandra & Weckenbrock, Christoph, 2015. "The German Energiewende – History and status quo," Energy, Elsevier, vol. 92(P3), pages 532-546.
    28. Bauermann, Klaas & Spiecker, Stephan & Weber, Christoph, 2014. "Individual decisions and system development – Integrating modelling approaches for the heating market," Applied Energy, Elsevier, vol. 116(C), pages 149-158.
    29. Zhang, Xi & Strbac, Goran & Teng, Fei & Djapic, Predrag, 2018. "Economic assessment of alternative heat decarbonisation strategies through coordinated operation with electricity system – UK case study," Applied Energy, Elsevier, vol. 222(C), pages 79-91.
    30. Hedegaard, Karsten & Balyk, Olexandr, 2013. "Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks," Energy, Elsevier, vol. 63(C), pages 356-365.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Löffler, Konstantin & Burandt, Thorsten & Hainsch, Karlo & Oei, Pao-Yu & Seehaus, Frederik & Wejda, Felix, 2022. "Chances and barriers for Germany's low carbon transition - Quantifying uncertainties in key influential factors," Energy, Elsevier, vol. 239(PA).
    2. Schill, Wolf-Peter & Zerrahn, Alexander, 2020. "Flexible electricity use for heating in markets with renewable energy," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 266.
    3. Bucksteeg, Michael & Wiedmann, Michael & Pöstges, Arne & Haller, Markus & Böttger, Diana & Ruhnau, Oliver & Schmitz, Richard, 2022. "The transformation of integrated electricity and heat systems—Assessing mid-term policies using a model comparison approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    4. Hamels, Sam & Himpe, Eline & Laverge, Jelle & Delghust, Marc & Van den Brande, Kjartan & Janssens, Arnold & Albrecht, Johan, 2021. "The use of primary energy factors and CO2 intensities for electricity in the European context - A systematic methodological review and critical evaluation of the contemporary literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    5. Jasmine Ramsebner & Reinhard Haas & Amela Ajanovic & Martin Wietschel, 2021. "The sector coupling concept: A critical review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(4), July.
    6. Jimenez-Navarro, Juan-Pablo & Kavvadias, Konstantinos & Filippidou, Faidra & Pavičević, Matija & Quoilin, Sylvain, 2020. "Coupling the heating and power sectors: The role of centralised combined heat and power plants and district heat in a European decarbonised power system," Applied Energy, Elsevier, vol. 270(C).
    7. Miguel Gonzalez-Salazar & Thomas Langrock & Christoph Koch & Jana Spieß & Alexander Noack & Markus Witt & Michael Ritzau & Armin Michels, 2020. "Evaluation of Energy Transition Pathways to Phase out Coal for District Heating in Berlin," Energies, MDPI, vol. 13(23), pages 1-27, December.
    8. Ahlrichs, Jakob & Rockstuhl, Sebastian & Tränkler, Timm & Wenninger, Simon, 2020. "The impact of political instruments on building energy retrofits: A risk-integrated thermal Energy Hub approach," Energy Policy, Elsevier, vol. 147(C).
    9. Pavičević, Matija & Mangipinto, Andrea & Nijs, Wouter & Lombardi, Francesco & Kavvadias, Konstantinos & Jiménez Navarro, Juan Pablo & Colombo, Emanuela & Quoilin, Sylvain, 2020. "The potential of sector coupling in future European energy systems: Soft linking between the Dispa-SET and JRC-EU-TIMES models," Applied Energy, Elsevier, vol. 267(C).
    10. Göke, Leonard, 2021. "A graph-based formulation for modeling macro-energy systems," Applied Energy, Elsevier, vol. 301(C).
    11. Pavel Ruseljuk & Andrei Dedov & Aleksandr Hlebnikov & Kertu Lepiksaar & Anna Volkova, 2023. "Comparison of District Heating Supply Options for Different CHP Configurations," Energies, MDPI, vol. 16(2), pages 1-14, January.
    12. Pablo Carvallo, Juan & Bieler, Stephanie & Collins, Myles & Mueller, Joscha & Gehbauer, Christoph & Gotham, Douglas J. & Larsen, Peter H., 2021. "A framework to measure the technical, economic, and rate impacts of distributed solar, electric vehicles, and storage," Applied Energy, Elsevier, vol. 297(C).
    13. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    14. Göke, Leonard & Weibezahn, Jens & Kendziorski, Mario, 2023. "How flexible electrification can integrate fluctuating renewables," Energy, Elsevier, vol. 278(PA).
    15. Yang, Huayu & Yan, Bowen & Chen, Wei & Fan, Daming, 2023. "Prediction and innovation of sustainable continuous flow microwave processing based on numerical simulations: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    16. Bartholdsen, Hans-Karl & Eidens, Anna & Löffler, Konstantin & Seehaus, Frederik & Wejda, Felix & Burandt, Thorsten & Oei, Pao-Yu & Kemfert, Claudia & Hirschhausen, Christian von, 2019. "Pathways for Germany's Low-Carbon Energy Transformation Towards 2050," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(15), pages 1-33.
    17. Pawlak-Kruczek, Halina & Niedźwiecki, Łukasz & Ostrycharczyk, Michał & Czerep, Michał & Plutecki, Zbigniew, 2019. "Potential and methods for increasing the flexibility and efficiency of the lignite fired power unit, using integrated lignite drying," Energy, Elsevier, vol. 181(C), pages 1142-1151.
    18. Naoya Nagano & Rémi Delage & Toshihiko Nakata, 2021. "Optimal Design and Analysis of Sector-Coupled Energy System in Northeast Japan," Energies, MDPI, vol. 14(10), pages 1-26, May.
    19. Simon Hilpert, 2020. "Effects of Decentral Heat Pump Operation on Electricity Storage Requirements in Germany," Energies, MDPI, vol. 13(11), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
    2. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
    3. Schill, Wolf-Peter & Zerrahn, Alexander, 2020. "Flexible electricity use for heating in markets with renewable energy," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 266.
    4. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    6. Felten, Björn & Weber, Christoph, 2018. "The value(s) of flexible heat pumps – Assessment of technical and economic conditions," Applied Energy, Elsevier, vol. 228(C), pages 1292-1319.
    7. Haghi, Ehsan & Qadrdan, Meysam & Wu, Jianzhong & Jenkins, Nick & Fowler, Michael & Raahemifar, Kaamran, 2020. "An iterative approach for optimal decarbonization of electricity and heat supply systems in the Great Britain," Energy, Elsevier, vol. 201(C).
    8. Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022. "The case of 100% electrification of domestic heat in Great Britain," Working Papers EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    9. Topi Rasku & Juha Kiviluoma, 2018. "A Comparison of Widespread Flexible Residential Electric Heating and Energy Efficiency in a Future Nordic Power System," Energies, MDPI, vol. 12(1), pages 1-27, December.
    10. Omais Abdur Rehman & Valeria Palomba & Andrea Frazzica & Luisa F. Cabeza, 2021. "Enabling Technologies for Sector Coupling: A Review on the Role of Heat Pumps and Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-30, December.
    11. Rinaldi, Arthur & Soini, Martin Christoph & Streicher, Kai & Patel, Martin K. & Parra, David, 2021. "Decarbonising heat with optimal PV and storage investments: A detailed sector coupling modelling framework with flexible heat pump operation," Applied Energy, Elsevier, vol. 282(PB).
    12. Oluleye, Gbemi & Allison, John & Hawker, Graeme & Kelly, Nick & Hawkes, Adam D., 2018. "A two-step optimization model for quantifying the flexibility potential of power-to-heat systems in dwellings," Applied Energy, Elsevier, vol. 228(C), pages 215-228.
    13. Jimenez-Navarro, Juan-Pablo & Kavvadias, Konstantinos & Filippidou, Faidra & Pavičević, Matija & Quoilin, Sylvain, 2020. "Coupling the heating and power sectors: The role of centralised combined heat and power plants and district heat in a European decarbonised power system," Applied Energy, Elsevier, vol. 270(C).
    14. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    15. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    16. Patteeuw, Dieter & Reynders, Glenn & Bruninx, Kenneth & Protopapadaki, Christina & Delarue, Erik & D’haeseleer, William & Saelens, Dirk & Helsen, Lieve, 2015. "CO2-abatement cost of residential heat pumps with active demand response: demand- and supply-side effects," Applied Energy, Elsevier, vol. 156(C), pages 490-501.
    17. Chiara Magni & Alessia Arteconi & Konstantinos Kavvadias & Sylvain Quoilin, 2020. "Modelling the Integration of Residential Heat Demand and Demand Response in Power Systems with High Shares of Renewables," Energies, MDPI, vol. 13(24), pages 1-19, December.
    18. Jasmine Ramsebner & Reinhard Haas & Amela Ajanovic & Martin Wietschel, 2021. "The sector coupling concept: A critical review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(4), July.
    19. Wang, Dan & Zhi, Yun-qiang & Jia, Hong-jie & Hou, Kai & Zhang, Shen-xi & Du, Wei & Wang, Xu-dong & Fan, Meng-hua, 2019. "Optimal scheduling strategy of district integrated heat and power system with wind power and multiple energy stations considering thermal inertia of buildings under different heating regulation modes," Applied Energy, Elsevier, vol. 240(C), pages 341-358.
    20. Simon Hilpert, 2020. "Effects of Decentral Heat Pump Operation on Electricity Storage Requirements in Germany," Energies, MDPI, vol. 13(11), pages 1-19, June.

    More about this item

    Keywords

    Power sector modelling; Sector coupling; Power-to-heat; C61; D61; Q42;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D61 - Microeconomics - - Welfare Economics - - - Allocative Efficiency; Cost-Benefit Analysis
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:239:y:2019:i:c:p:560-580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.