IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v238y2019icp1-10.html
   My bibliography  Save this article

Methanol as antifreeze agent for cold start of automotive polymer electrolyte membrane fuel cells

Author

Listed:
  • Knorr, Florian
  • Sanchez, Daniel Garcia
  • Schirmer, Johannes
  • Gazdzicki, Pawel
  • Friedrich, K.A.

Abstract

One challenge for polymer electrolyte membrane fuel cells (PEMFCs) for electric vehicles is to ensure cold start capability and longevity under freeze-thaw (F/T) cycling. Today, PEMFCs undergo dry gas purging to remove residual water before a cold shut-down to avoid degradation due to icing. This study investigates an alternative procedure with alcohol-water solution as antifreeze. In order to demonstrate the suitability of methanol as antifreeze, F/T cycling tests using methanol have been compared with conventional dry gas purging of the cell before F/T cycling. The results show that performance degradation upon F/T cycling is mitigated when flooding the cell with the antifreeze prior to F/T cycling. Specifically, performance losses are observed at high current densities only and the peak performance of the cell does not decrease. Moreover, cold start procedures are examined to allow a start-up of the cell after being soaked with the antifreeze. In this context it is found that PEMFC operation is possible at sub-zero temperature if residual methanol is in the cell. However, residual methanol decreases power density during cold start. Hence, methanol needs to be removed from the cell by reaction or by prolonged water purging to reach nominal power.

Suggested Citation

  • Knorr, Florian & Sanchez, Daniel Garcia & Schirmer, Johannes & Gazdzicki, Pawel & Friedrich, K.A., 2019. "Methanol as antifreeze agent for cold start of automotive polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 1-10.
  • Handle: RePEc:eee:appene:v:238:y:2019:i:c:p:1-10
    DOI: 10.1016/j.apenergy.2019.01.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919300364
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.01.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Hong-Yue & Santamaria, Anthony D. & Bachman, John & Park, Jae Wan, 2013. "Vacuum-assisted drying of polymer electrolyte membrane fuel cell," Applied Energy, Elsevier, vol. 107(C), pages 264-270.
    2. Zhang, Tong & Wang, Peiqi & Chen, Huicui & Pei, Pucheng, 2018. "A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition," Applied Energy, Elsevier, vol. 223(C), pages 249-262.
    3. Chang, Yafei & Qin, Yanzhou & Yin, Yan & Zhang, Junfeng & Li, Xianguo, 2018. "Humidification strategy for polymer electrolyte membrane fuel cells – A review," Applied Energy, Elsevier, vol. 230(C), pages 643-662.
    4. Zhongmin Wan & Huawei Chang & Shuiming Shu & Yongxiang Wang & Haolin Tang, 2014. "A Review on Cold Start of Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 7(5), pages 1-25, May.
    5. Ko, Johan & Ju, Hyunchul, 2012. "Comparison of numerical simulation results and experimental data during cold-start of polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 94(C), pages 364-374.
    6. Huo, Sen & Cooper, Nathanial James & Smith, Travis Lee & Park, Jae Wan & Jiao, Kui, 2017. "Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor," Applied Energy, Elsevier, vol. 203(C), pages 101-114.
    7. Huo, Sen & Jiao, Kui & Park, Jae Wan, 2019. "On the water transport behavior and phase transition mechanisms in cold start operation of PEM fuel cell," Applied Energy, Elsevier, vol. 233, pages 776-788.
    8. Amamou, A. & Kandidayeni, M. & Boulon, L. & Kelouwani, S., 2018. "Real time adaptive efficient cold start strategy for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 216(C), pages 21-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Montaner Ríos, G. & Schirmer, J. & Gentner, C. & Kallo, J., 2020. "Efficient thermal management strategies for cold starts of a proton exchange membrane fuel cell system," Applied Energy, Elsevier, vol. 279(C).
    2. Pan, Weitong & Li, Ping & Gan, Quanquan & Chen, Xueli & Wang, Fuchen & Dai, Gance, 2020. "Thermal stability analysis of cold start processes in PEM fuel cells," Applied Energy, Elsevier, vol. 261(C).
    3. Zuria, Alonso Moreno & Abrego-Martinez, Juan Carlos & Sun, Shuhui & Mohamedi, Mohamed, 2020. "Prospects of membraneless mixed-reactant microfluidic fuel cells: Evolution through numerical simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Gießgen, Tom & Jahnke, Thomas, 2023. "Assisted cold start of a PEMFC with a thermochemical preheater: A numerical study," Applied Energy, Elsevier, vol. 331(C).
    5. Pengcheng Liu & Sichuan Xu, 2022. "Experimental Research on the Dynamic Characteristics and Voltage Uniformity of a PEMFC Stack under Subzero Temperatures," Energies, MDPI, vol. 15(9), pages 1-14, April.
    6. Chen, Xi & Yang, Chen & Sun, Yun & Liu, Qinxiao & Wan, Zhongmin & Kong, Xiangzhong & Tu, Zhengkai & Wang, Xiaodong, 2022. "Water management and structure optimization study of nickel metal foam as flow distributors in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 309(C).
    7. Indro Biswas & Daniel G. Sánchez & Mathias Schulze & Jens Mitzel & Benjamin Kimmel & Aldo Saul Gago & Pawel Gazdzicki & K. Andreas Friedrich, 2020. "Advancement of Segmented Cell Technology in Low Temperature Hydrogen Technologies," Energies, MDPI, vol. 13(9), pages 1-22, May.
    8. Yang, Liu & Cao, Chenxi & Gan, Quanquan & Pei, Hao & Zhang, Qi & Li, Ping, 2022. "Revealing failure modes and effect of catalyst layer properties for PEM fuel cell cold start using an agglomerate model," Applied Energy, Elsevier, vol. 312(C).
    9. Chunjuan Shen & Sichuan Xu & Lei Pan & Yuan Gao, 2021. "A High-Efficiency Cooperative Control Strategy of Active and Passive Heating for a Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 14(21), pages 1-11, November.
    10. Li, Linjun & Wang, Shixue & Yue, Like & Wang, Guozhuo, 2019. "Cold-start method for proton-exchange membrane fuel cells based on locally heating the cathode," Applied Energy, Elsevier, vol. 254(C).
    11. Yang, Zirong & Jiao, Kui & Wu, Kangcheng & Shi, Weilong & Jiang, Shangfeng & Zhang, Longhai & Du, Qing, 2021. "Numerical investigations of assisted heating cold start strategies for proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 222(C).
    12. Yanbo Yang & Tiancai Ma & Boyu Du & Weikang Lin & Naiyuan Yao, 2021. "Investigation on the Operating Conditions of Proton Exchange Membrane Fuel Cell Based on Constant Voltage Cold Start Mode," Energies, MDPI, vol. 14(3), pages 1-10, January.
    13. Wei Jiang & Ke Song & Bailin Zheng & Yongchuan Xu & Ruoshi Fang, 2020. "Study on Fast Cold Start-Up Method of Proton Exchange Membrane Fuel Cell Based on Electric Heating Technology," Energies, MDPI, vol. 13(17), pages 1-26, August.
    14. Lin, Rui & Zhu, Yike & Ni, Meng & Jiang, Zhenghua & Lou, Diming & Han, Lihang & Zhong, Di, 2019. "Consistency analysis of polymer electrolyte membrane fuel cell stack during cold start," Applied Energy, Elsevier, vol. 241(C), pages 420-432.
    15. Wan, Zhongmin & Yan, Hanzhang & Sun, Yun & Yang, Chen & Chen, Xi & Kong, Xiangzhong & Chen, Yiyu & Tu, Zhengkai & Wang, Xiaodong, 2023. "Thermal management improvement of air-cooled proton exchange membrane fuel cell by using metal foam flow field," Applied Energy, Elsevier, vol. 333(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Rui & Zhu, Yike & Ni, Meng & Jiang, Zhenghua & Lou, Diming & Han, Lihang & Zhong, Di, 2019. "Consistency analysis of polymer electrolyte membrane fuel cell stack during cold start," Applied Energy, Elsevier, vol. 241(C), pages 420-432.
    2. Pan, Weitong & Li, Ping & Gan, Quanquan & Chen, Xueli & Wang, Fuchen & Dai, Gance, 2020. "Thermal stability analysis of cold start processes in PEM fuel cells," Applied Energy, Elsevier, vol. 261(C).
    3. Huo, Sen & Jiao, Kui & Park, Jae Wan, 2019. "On the water transport behavior and phase transition mechanisms in cold start operation of PEM fuel cell," Applied Energy, Elsevier, vol. 233, pages 776-788.
    4. Zang, Linfeng & Hao, Liang & Zhu, Xiaojing, 2023. "Effect of the pore structure of cathode catalyst layer on the PEM fuel cell cold start process," Energy, Elsevier, vol. 271(C).
    5. Amamou, A. & Kandidayeni, M. & Boulon, L. & Kelouwani, S., 2018. "Real time adaptive efficient cold start strategy for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 216(C), pages 21-30.
    6. Lin, Rui & Zhong, Di & Lan, Shunbo & Guo, Rong & Ma, Yunyang & Cai, Xin, 2021. "Experimental validation for enhancement of PEMFC cold start performance: Based on the optimization of micro porous layer," Applied Energy, Elsevier, vol. 300(C).
    7. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    8. Chen, Qin & Zhang, Guobin & Zhang, Xuzhong & Sun, Cheng & Jiao, Kui & Wang, Yun, 2021. "Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability," Applied Energy, Elsevier, vol. 286(C).
    9. Zhan, Zhigang & Yuan, Chong & Hu, Zhangrong & Wang, Hui & Sui, P.C. & Djilali, Ned & Pan, Mu, 2018. "Experimental study on different preheating methods for the cold-start of PEMFC stacks," Energy, Elsevier, vol. 162(C), pages 1029-1040.
    10. Yazhou Chen & Sheng Li & Jie Peng & Weilin Zhuge & Yangjun Zhang, 2023. "Numerical Simulation of the Cold-Start Process of Polymer Electrolyte Fuel Cell," Energies, MDPI, vol. 16(16), pages 1-23, August.
    11. Wu, Kangcheng & Du, Qing & Zu, Bingfeng & Wang, Yupeng & Cai, Jun & Gu, Xin & Xuan, Jin & Jiao, Kui, 2021. "Enabling real-time optimization of dynamic processes of proton exchange membrane fuel cell: Data-driven approach with semi-recurrent sliding window method," Applied Energy, Elsevier, vol. 303(C).
    12. Hou, Junbo & Yang, Min & Ke, Changchun & Zhang, Junliang, 2020. "Control logics and strategies for air supply in PEM fuel cell engines," Applied Energy, Elsevier, vol. 269(C).
    13. Bhosale, Amit C. & Rengaswamy, Raghunathan, 2019. "Interfacial contact resistance in polymer electrolyte membrane fuel cells: Recent developments and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    14. Chunjuan Shen & Sichuan Xu & Lei Pan & Yuan Gao, 2021. "A High-Efficiency Cooperative Control Strategy of Active and Passive Heating for a Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 14(21), pages 1-11, November.
    15. Yang, Zirong & Jiao, Kui & Wu, Kangcheng & Shi, Weilong & Jiang, Shangfeng & Zhang, Longhai & Du, Qing, 2021. "Numerical investigations of assisted heating cold start strategies for proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 222(C).
    16. Xia, Zhifeng & Chen, Huicui & Zhang, Ruirui & Weng, Qianyao & Zhang, Tong & Pei, Pucheng, 2023. "Behavior analysis of PEMFC with geometric configuration variation during multiple-step loading reduction process," Applied Energy, Elsevier, vol. 349(C).
    17. Xiaokang Yang & Jiaqi Sun & Guang Jiang & Shucheng Sun & Zhigang Shao & Hongmei Yu & Fangwei Duan & Yingxuan Yang, 2021. "Experimental Study on Critical Membrane Water Content of Proton Exchange Membrane Fuel Cells for Cold Storage at −50 °C," Energies, MDPI, vol. 14(15), pages 1-17, July.
    18. Pan, Mingzhang & Pan, Chengjie & Li, Chao & Zhao, Jian, 2021. "A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    19. Shantanu Pardhi & Sajib Chakraborty & Dai-Duong Tran & Mohamed El Baghdadi & Steven Wilkins & Omar Hegazy, 2022. "A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions," Energies, MDPI, vol. 15(24), pages 1-55, December.
    20. Bizon, Nicu, 2019. "Fuel saving strategy using real-time switching of the fueling regulators in the proton exchange membrane fuel cell system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:238:y:2019:i:c:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.