IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v203y2017icp101-114.html
   My bibliography  Save this article

Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor

Author

Listed:
  • Huo, Sen
  • Cooper, Nathanial James
  • Smith, Travis Lee
  • Park, Jae Wan
  • Jiao, Kui

Abstract

Metal foam has been regarded as one of the most important replacement for the conventional flow distributor of commercial fuel cells in recent years. One critical issue for the commercialization of proton exchange membrane (PEM) fuel cell is the successful startup from subzero temperatures. In this study, experimental tests on a PEM fuel cell using nickel metal foam as the cathode flow distributor are carried out to investigate the cold start performance. The cold start performance is also compared to a PEM fuel cell with parallel flow channels. Both galvanostatic and potentiostatic control are considered. The results show that under normal operating conditions the metal foam PEM fuel cell exhibits higher maximum net power density than the cell with parallel flow channels, whereas the parallel channel case exhibits slightly better performance at lower current densities. For cold start tests, metal foam is superior to the conventional parallel flow channel under galvanostatic control, due to its extremely porous structure, uniform mass and heat distribution. It is more difficult for PEM fuel cell under potentiostatic control to successfully start up due to possible ice blockage at the outlet.

Suggested Citation

  • Huo, Sen & Cooper, Nathanial James & Smith, Travis Lee & Park, Jae Wan & Jiao, Kui, 2017. "Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor," Applied Energy, Elsevier, vol. 203(C), pages 101-114.
  • Handle: RePEc:eee:appene:v:203:y:2017:i:c:p:101-114
    DOI: 10.1016/j.apenergy.2017.06.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917307705
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.06.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    2. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    3. Arun Saco, S. & Thundil Karuppa Raj, R. & Karthikeyan, P., 2016. "A study on scaled up proton exchange membrane fuel cell with various flow channels for optimizing power output by effective water management using numerical technique," Energy, Elsevier, vol. 113(C), pages 558-573.
    4. Mahdi, Jasim M. & Nsofor, Emmanuel C., 2017. "Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination," Applied Energy, Elsevier, vol. 191(C), pages 22-34.
    5. Yuan, Wei & Wang, Aoyu & Ye, Guangzhao & Pan, Baoyou & Tang, Kairui & Chen, Haimu, 2017. "Dynamic relationship between the CO2 gas bubble behavior and the pressure drop characteristics in the anode flow field of an active liquid-feed direct methanol fuel cell," Applied Energy, Elsevier, vol. 188(C), pages 431-443.
    6. Ko, Johan & Ju, Hyunchul, 2012. "Comparison of numerical simulation results and experimental data during cold-start of polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 94(C), pages 364-374.
    7. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    8. Kuruneru, Sahan Trushad Wickramasooriya & Sauret, Emilie & Saha, Suvash Chandra & Gu, YuanTong, 2016. "Numerical investigation of the temporal evolution of particulate fouling in metal foams for air-cooled heat exchangers," Applied Energy, Elsevier, vol. 184(C), pages 531-547.
    9. Yuan, Wei & Tang, Yong & Yang, Xiaojun & Wan, Zhenping, 2012. "Porous metal materials for polymer electrolyte membrane fuel cells – A review," Applied Energy, Elsevier, vol. 94(C), pages 309-329.
    10. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    11. Wang, Junye, 2017. "System integration, durability and reliability of fuel cells: Challenges and solutions," Applied Energy, Elsevier, vol. 189(C), pages 460-479.
    12. Mahdi, Jasim M. & Nsofor, Emmanuel C., 2017. "Solidification enhancement in a triplex-tube latent heat energy storage system using nanoparticles-metal foam combination," Energy, Elsevier, vol. 126(C), pages 501-512.
    13. Yang, Xiaohu & Feng, Shangsheng & Zhang, Qunli & Chai, Yue & Jin, Liwen & Lu, Tian Jian, 2017. "The role of porous metal foam on the unidirectional solidification of saturating fluid for cold storage," Applied Energy, Elsevier, vol. 194(C), pages 508-521.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Bowen & Deng, Hao & Jiao, Kui, 2018. "Purge strategy optimization of proton exchange membrane fuel cell with anode recirculation," Applied Energy, Elsevier, vol. 225(C), pages 1-13.
    2. Pan, Weitong & Li, Ping & Gan, Quanquan & Chen, Xueli & Wang, Fuchen & Dai, Gance, 2020. "Thermal stability analysis of cold start processes in PEM fuel cells," Applied Energy, Elsevier, vol. 261(C).
    3. Ercelik, Mustafa & Ismail, Mohammed S. & Ingham, Derek B. & Hughes, Kevin J. & Ma, Lin & Pourkashanian, Mohamed, 2023. "Efficient X-ray CT-based numerical computations of structural and mass transport properties of nickel foam-based GDLs for PEFCs," Energy, Elsevier, vol. 262(PB).
    4. Tan, Weng Cheong & Saw, Lip Huat & Thiam, Hui San & Xuan, Jin & Cai, Zuansi & Yew, Ming Chian, 2018. "Overview of porous media/metal foam application in fuel cells and solar power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 181-197.
    5. Lu, Xu & Wang, Yifei & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2018. "A counter-flow-based dual-electrolyte protocol for multiple electrochemical applications," Applied Energy, Elsevier, vol. 217(C), pages 241-248.
    6. Lopes, Thiago & Beruski, Otavio & Manthanwar, Amit M. & Korkischko, Ivan & Pugliesi, Reynaldo & Stanojev, Marco Antonio & Andrade, Marcos Leandro Garcia & Pistikopoulos, Efstratios N. & Perez, Joelma , 2019. "Spatially resolved oxygen reaction, water, and temperature distribution: Experimental results as a function of flow field and implications for polymer electrolyte fuel cell operation," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. Wu, Horng-Wen & Shih, Gin-Jang & Chen, Yi-Bin, 2018. "Effect of operational parameters on transport and performance of a PEM fuel cell with the best protrusive gas diffusion layer arrangement," Applied Energy, Elsevier, vol. 220(C), pages 47-58.
    8. Baik, Kyung Don & Seo, Il Sung, 2018. "Metallic bipolar plate with a multi-hole structure in the rib regions for polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 212(C), pages 333-339.
    9. Knorr, Florian & Sanchez, Daniel Garcia & Schirmer, Johannes & Gazdzicki, Pawel & Friedrich, K.A., 2019. "Methanol as antifreeze agent for cold start of automotive polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 1-10.
    10. Amamou, A. & Kandidayeni, M. & Boulon, L. & Kelouwani, S., 2018. "Real time adaptive efficient cold start strategy for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 216(C), pages 21-30.
    11. Song, Zhen & Pan, Yue & Chen, Huicui & Zhang, Tong, 2021. "Effects of temperature on the performance of fuel cell hybrid electric vehicles: A review," Applied Energy, Elsevier, vol. 302(C).
    12. Zang, Linfeng & Hao, Liang & Zhu, Xiaojing, 2023. "Effect of the pore structure of cathode catalyst layer on the PEM fuel cell cold start process," Energy, Elsevier, vol. 271(C).
    13. Kermani, M.J. & Moein-Jahromi, M. & Hasheminasab, M.R. & Ebrahimi, F. & Wei, L. & Guo, J. & Jiang, F.M., 2022. "Application of a foam-based functionally graded porous material flow-distributor to PEM fuel cells," Energy, Elsevier, vol. 254(PB).
    14. Xia, Zhifeng & Chen, Huicui & Zhang, Ruirui & Weng, Qianyao & Zhang, Tong & Pei, Pucheng, 2023. "Behavior analysis of PEMFC with geometric configuration variation during multiple-step loading reduction process," Applied Energy, Elsevier, vol. 349(C).
    15. Huo, Sen & Jiao, Kui & Park, Jae Wan, 2019. "On the water transport behavior and phase transition mechanisms in cold start operation of PEM fuel cell," Applied Energy, Elsevier, vol. 233, pages 776-788.
    16. Bao, Zhiming & Niu, Zhiqiang & Jiao, Kui, 2020. "Gas distribution and droplet removal of metal foam flow field for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 280(C).
    17. Lin, Rui & Zhu, Yike & Ni, Meng & Jiang, Zhenghua & Lou, Diming & Han, Lihang & Zhong, Di, 2019. "Consistency analysis of polymer electrolyte membrane fuel cell stack during cold start," Applied Energy, Elsevier, vol. 241(C), pages 420-432.
    18. Xu, Sheng & Yin, Bifeng & Li, Zekai & Dong, Fei, 2023. "A review on gas purge of proton exchange membrane fuel cells: Mechanisms, experimental approaches, numerical approaches, and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    19. Myo-Eun Kim & Young-Jun Sohn, 2020. "Study on Polymer Electrolyte Fuel Cells with Nonhumidification Using Metal Foam in Dead-Ended Operation," Energies, MDPI, vol. 13(5), pages 1-12, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Junye, 2017. "System integration, durability and reliability of fuel cells: Challenges and solutions," Applied Energy, Elsevier, vol. 189(C), pages 460-479.
    2. Amamou, A. & Kandidayeni, M. & Boulon, L. & Kelouwani, S., 2018. "Real time adaptive efficient cold start strategy for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 216(C), pages 21-30.
    3. Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
    4. Li, Wenkai & Zhang, Qinglei & Wang, Chao & Yan, Xiaohui & Shen, Shuiyun & Xia, Guofeng & Zhu, Fengjuan & Zhang, Junliang, 2017. "Experimental and numerical analysis of a three-dimensional flow field for PEMFCs," Applied Energy, Elsevier, vol. 195(C), pages 278-288.
    5. Huo, Sen & Jiao, Kui & Park, Jae Wan, 2019. "On the water transport behavior and phase transition mechanisms in cold start operation of PEM fuel cell," Applied Energy, Elsevier, vol. 233, pages 776-788.
    6. Vasile, Nicolò S. & Doherty, Ronan & Monteverde Videla, Alessandro H.A. & Specchia, Stefania, 2016. "3D multi-physics modeling of a gas diffusion electrode for oxygen reduction reaction for electrochemical energy conversion in PEM fuel cells," Applied Energy, Elsevier, vol. 175(C), pages 435-450.
    7. Dagang Lu & Fengyan Yi & Jianwei Li, 2022. "Optimization of the Adaptability of the Fuel Cell Vehicle Waste Heat Utilization Subsystem to Extreme Cold Environments," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    8. Zhou, Zihan & Qiu, Diankai & Zhai, Shuang & Peng, Linfa & Lai, Xinmin, 2020. "Investigation of the assembly for high-power proton exchange membrane fuel cell stacks through an efficient equivalent model," Applied Energy, Elsevier, vol. 277(C).
    9. Joshi, Varun & Rathod, Manish K., 2019. "Thermal performance augmentation of metal foam infused phase change material using a partial filling strategy: An evaluation for fill height ratio and porosity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Chowdhury, Mohammad Ziauddin & Timurkutluk, Bora, 2018. "Transport phenomena of convergent and divergent serpentine flow fields for PEMFC," Energy, Elsevier, vol. 161(C), pages 104-117.
    11. Shahgaldi, Samaneh & Alaefour, Ibrahim & Li, Xianguo, 2018. "The impact of short side chain ionomer on polymer electrolyte membrane fuel cell performance and durability," Applied Energy, Elsevier, vol. 217(C), pages 295-302.
    12. Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    13. Andersson, M. & Beale, S.B. & Espinoza, M. & Wu, Z. & Lehnert, W., 2016. "A review of cell-scale multiphase flow modeling, including water management, in polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 180(C), pages 757-778.
    14. Pan, Weitong & Li, Ping & Gan, Quanquan & Chen, Xueli & Wang, Fuchen & Dai, Gance, 2020. "Thermal stability analysis of cold start processes in PEM fuel cells," Applied Energy, Elsevier, vol. 261(C).
    15. Xinguo Sun & Jasim M. Mahdi & Hayder I. Mohammed & Hasan Sh. Majdi & Wang Zixiong & Pouyan Talebizadehsardari, 2021. "Solidification Enhancement in a Triple-Tube Latent Heat Energy Storage System Using Twisted Fins," Energies, MDPI, vol. 14(21), pages 1-23, November.
    16. Liao, Shuxin & Qiu, Diankai & Yi, Peiyun & Peng, Linfa & Lai, Xinmin, 2022. "Modeling of a novel cathode flow field design with optimized sub-channels to improve drainage for proton exchange membrane fuel cells," Energy, Elsevier, vol. 261(PB).
    17. Zheng Huang & Laisuo Su & Yunjie Yang & Linsong Gao & Xinyu Liu & Heng Huang & Yubai Li & Yongchen Song, 2023. "Three-Dimensional Simulation on the Effects of Different Parameters and Pt Loading on the Long-Term Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    18. Shahsavar, Amin & Al-Rashed, Abdullah A.A.A. & Entezari, Sajad & Sardari, Pouyan Talebizadeh, 2019. "Melting and solidification characteristics of a double-pipe latent heat storage system with sinusoidal wavy channels embedded in a porous medium," Energy, Elsevier, vol. 171(C), pages 751-769.
    19. Bae, Suk Joo & Kim, Seong-Joon & Lee, Jin-Hwa & Song, Inseob & Kim, Nam-In & Seo, Yongho & Kim, Ki Buem & Lee, Naesung & Park, Jun-Young, 2014. "Degradation pattern prediction of a polymer electrolyte membrane fuel cell stack with series reliability structure via durability data of single cells," Applied Energy, Elsevier, vol. 131(C), pages 48-55.
    20. Mahdi, Jasim M. & Mohammed, Hayder I. & Hashim, Emad T. & Talebizadehsardari, Pouyan & Nsofor, Emmanuel C., 2020. "Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system," Applied Energy, Elsevier, vol. 257(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:203:y:2017:i:c:p:101-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.