IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i5p3179-3203d36031.html
   My bibliography  Save this article

A Review on Cold Start of Proton Exchange Membrane Fuel Cells

Author

Listed:
  • Zhongmin Wan

    (College of Information & Communication Engineering, Hunan Institution of Science and Technology, Yueyang 414006, Hunan, China
    School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China)

  • Huawei Chang

    (School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China)

  • Shuiming Shu

    (School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China)

  • Yongxiang Wang

    (School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China)

  • Haolin Tang

    (State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China)

Abstract

Successful and rapid startup of proton exchange membrane fuel cells (PEMFCs) at subfreezing temperatures (also called cold start) is of great importance for their commercialization in automotive and portable devices. In order to maintain good proton conductivity, the water content in the membrane must be kept at a certain level to ensure that the membrane remains fully hydrated. However, the water in the pores of the catalyst layer (CL), gas diffusion layer (GDL) and the membrane may freeze once the cell temperature decreases below the freezing point ( T f ). Thus, methods which could enable the fuel cell startup without or with slight performance degradation at subfreezing temperature need to be studied. This paper presents an extensive review on cold start of PEMFCs, including the state and phase changes of water in PEMFCs, impacts of water freezing on PEMFCs, numerical and experimental studies on PEMFCs, and cold start strategies. The impacts on each component of the fuel cell are discussed in detail. Related numerical and experimental work is also discussed. It should be mentioned that the cold start strategies, especially the enumerated patents, are of great reference value on the practical cold start process.

Suggested Citation

  • Zhongmin Wan & Huawei Chang & Shuiming Shu & Yongxiang Wang & Haolin Tang, 2014. "A Review on Cold Start of Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 7(5), pages 1-25, May.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:5:p:3179-3203:d:36031
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/5/3179/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/5/3179/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wan, Zhongmin & Liu, Jing & Luo, Zhiping & Tu, Zhengkai & Liu, Zhichun & Liu, Wei, 2013. "Evaluation of self-water-removal in a dead-ended proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 104(C), pages 751-757.
    2. Ko, Johan & Ju, Hyunchul, 2012. "Comparison of numerical simulation results and experimental data during cold-start of polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 94(C), pages 364-374.
    3. Robert Alink & Dietmar Gerteisen, 2013. "Modeling the Liquid Water Transport in the Gas Diffusion Layer for Polymer Electrolyte Membrane Fuel Cells Using a Water Path Network," Energies, MDPI, vol. 6(9), pages 1-23, September.
    4. Mengbo Ji & Zidong Wei, 2009. "A Review of Water Management in Polymer Electrolyte Membrane Fuel Cells," Energies, MDPI, vol. 2(4), pages 1-50, November.
    5. Der-Sheng Chan & Kan-Lin Hsueh, 2010. "A Transient Model for Fuel Cell Cathode-Water Propagation Behavior inside a Cathode after a Step Potential," Energies, MDPI, vol. 3(5), pages 1-20, April.
    6. Melika Hinaje & Stéphane Raël & Panee Noiying & Dinh An Nguyen & Bernard Davat, 2012. "An Equivalent Electrical Circuit Model of Proton Exchange Membrane Fuel Cells Based on Mathematical Modelling," Energies, MDPI, vol. 5(8), pages 1-21, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Weitong & Li, Ping & Gan, Quanquan & Chen, Xueli & Wang, Fuchen & Dai, Gance, 2020. "Thermal stability analysis of cold start processes in PEM fuel cells," Applied Energy, Elsevier, vol. 261(C).
    2. Khadijeh Hooshyari & Bahman Amini Horri & Hamid Abdoli & Mohsen Fallah Vostakola & Parvaneh Kakavand & Parisa Salarizadeh, 2021. "A Review of Recent Developments and Advanced Applications of High-Temperature Polymer Electrolyte Membranes for PEM Fuel Cells," Energies, MDPI, vol. 14(17), pages 1-38, September.
    3. Anggito P. Tetuko & Bahman Shabani & John Andrews, 2018. "Passive Fuel Cell Heat Recovery Using Heat Pipes to Enhance Metal Hydride Canisters Hydrogen Discharge Rate: An Experimental Simulation," Energies, MDPI, vol. 11(4), pages 1-19, April.
    4. Shantanu Pardhi & Sajib Chakraborty & Dai-Duong Tran & Mohamed El Baghdadi & Steven Wilkins & Omar Hegazy, 2022. "A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions," Energies, MDPI, vol. 15(24), pages 1-55, December.
    5. Mohammed Yousri Silaa & Mohamed Derbeli & Oscar Barambones & Cristian Napole & Ali Cheknane & José María Gonzalez De Durana, 2021. "An Efficient and Robust Current Control for Polymer Electrolyte Membrane Fuel Cell Power System," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    6. Jin Hyun Kim & Gwang Goo Lee & Woo Tae Kim, 2017. "Comparison of Liquid Water Dynamics in Bent Gas Channels of a Polymer Electrolyte Membrane Fuel Cell with Different Channel Cross Sections in a Channel Flooding Situation," Energies, MDPI, vol. 10(6), pages 1-18, May.
    7. Sun-Joon Byun & Zhen Huan Wang & Jun Son & Dong-Kurl Kwak & Young-Chul Kwon, 2018. "Experimental Study on Improvement of Performance by Wave Form Cathode Channels in a PEM Fuel Cell," Energies, MDPI, vol. 11(2), pages 1-14, February.
    8. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    9. Devin Fowler & Vladimir Gurau & Daniel Cox, 2019. "Bridging the Gap between Automated Manufacturing of Fuel Cell Components and Robotic Assembly of Fuel Cell Stacks," Energies, MDPI, vol. 12(19), pages 1-14, September.
    10. Knorr, Florian & Sanchez, Daniel Garcia & Schirmer, Johannes & Gazdzicki, Pawel & Friedrich, K.A., 2019. "Methanol as antifreeze agent for cold start of automotive polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 1-10.
    11. Wang, Junye, 2017. "System integration, durability and reliability of fuel cells: Challenges and solutions," Applied Energy, Elsevier, vol. 189(C), pages 460-479.
    12. Amamou, A. & Kandidayeni, M. & Boulon, L. & Kelouwani, S., 2018. "Real time adaptive efficient cold start strategy for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 216(C), pages 21-30.
    13. Xiaokang Yang & Jiaqi Sun & Guang Jiang & Shucheng Sun & Zhigang Shao & Hongmei Yu & Fangwei Duan & Yingxuan Yang, 2021. "Experimental Study on Critical Membrane Water Content of Proton Exchange Membrane Fuel Cells for Cold Storage at −50 °C," Energies, MDPI, vol. 14(15), pages 1-17, July.
    14. Tian, Pengjie & Liu, Xuejun & Luo, Kaiyao & Li, Hongkun & Wang, Yun, 2021. "Deep learning from three-dimensional multiphysics simulation in operational optimization and control of polymer electrolyte membrane fuel cell for maximum power," Applied Energy, Elsevier, vol. 288(C).
    15. Guozhuo Wang & Yoshio Utaka & Shixue Wang, 2020. "Effect of Dual Porous Layers with Patterned Wettability on Low-Temperature Start Performance of Polymer Electrolyte Membrane Fuel Cell," Energies, MDPI, vol. 13(14), pages 1-16, July.
    16. Chen, Qin & Zhang, Guobin & Zhang, Xuzhong & Sun, Cheng & Jiao, Kui & Wang, Yun, 2021. "Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability," Applied Energy, Elsevier, vol. 286(C).
    17. Lin, Rui & Zhu, Yike & Ni, Meng & Jiang, Zhenghua & Lou, Diming & Han, Lihang & Zhong, Di, 2019. "Consistency analysis of polymer electrolyte membrane fuel cell stack during cold start," Applied Energy, Elsevier, vol. 241(C), pages 420-432.
    18. Riccardo Balzarotti & Saverio Latorrata & Marco Mariani & Paola Gallo Stampino & Giovanni Dotelli, 2020. "Optimization of Perfluoropolyether-Based Gas Diffusion Media Preparation for PEM Fuel Cells," Energies, MDPI, vol. 13(7), pages 1-14, April.
    19. Qiu, Diankai & Peng, Linfa & Lai, Xinmin & Ni, Meng & Lehnert, Werner, 2019. "Mechanical failure and mitigation strategies for the membrane in a proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Mingzhang & Pan, Chengjie & Li, Chao & Zhao, Jian, 2021. "A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Yang, Liu & Cao, Chenxi & Gan, Quanquan & Pei, Hao & Zhang, Qi & Li, Ping, 2022. "Revealing failure modes and effect of catalyst layer properties for PEM fuel cell cold start using an agglomerate model," Applied Energy, Elsevier, vol. 312(C).
    3. Andersson, M. & Beale, S.B. & Espinoza, M. & Wu, Z. & Lehnert, W., 2016. "A review of cell-scale multiphase flow modeling, including water management, in polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 180(C), pages 757-778.
    4. Qinchuan Niu & Minglin Li & Lianfeng Lai, 2022. "Effect of In-Pore Wettability on Mass Transfer Performance of Fuel Cell Gas Diffusion Layer," Energies, MDPI, vol. 15(10), pages 1-12, May.
    5. Abdin, Z. & Webb, C.J. & Gray, E.MacA., 2016. "PEM fuel cell model and simulation in Matlab–Simulink based on physical parameters," Energy, Elsevier, vol. 116(P1), pages 1131-1144.
    6. Samuel Simon Araya & Fan Zhou & Simon Lennart Sahlin & Sobi Thomas & Christian Jeppesen & Søren Knudsen Kær, 2019. "Fault Characterization of a Proton Exchange Membrane Fuel Cell Stack," Energies, MDPI, vol. 12(1), pages 1-17, January.
    7. Guo, Hang & Liu, Xuan & Zhao, Jian Fu & Ye, Fang & Ma, Chong Fang, 2014. "Experimental study of two-phase flow in a proton exchange membrane fuel cell in short-term microgravity condition," Applied Energy, Elsevier, vol. 136(C), pages 509-518.
    8. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    9. Yao, Jing & Wu, Zhen & Wang, Huan & Yang, Fusheng & Xuan, Jin & Xing, Lei & Ren, Jianwei & Zhang, Zaoxiao, 2022. "Design and multi-objective optimization of low-temperature proton exchange membrane fuel cells with efficient water recovery and high electrochemical performance," Applied Energy, Elsevier, vol. 324(C).
    10. Damien Guilbert & Gianpaolo Vitale, 2019. "Dynamic Emulation of a PEM Electrolyzer by Time Constant Based Exponential Model," Energies, MDPI, vol. 12(4), pages 1-17, February.
    11. Chunjuan Shen & Sichuan Xu & Lei Pan & Yuan Gao, 2021. "A High-Efficiency Cooperative Control Strategy of Active and Passive Heating for a Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 14(21), pages 1-11, November.
    12. Seohee Lim & Jin-Soo Park, 2020. "Composite Membranes Using Hydrophilized Porous Substrates for Hydrogen Based Energy Conversion," Energies, MDPI, vol. 13(22), pages 1-14, November.
    13. Maximilian Schmitz & Matthias Bahr & Sönke Gößling & Stefan Pischinger, 2023. "Analysis of Ice Formation during Start-Up of PEM Fuel Cells at Subzero Temperatures Using Experimental and Simulative Methods," Energies, MDPI, vol. 16(18), pages 1-26, September.
    14. Riccardo Balzarotti & Saverio Latorrata & Marco Mariani & Paola Gallo Stampino & Giovanni Dotelli, 2020. "Optimization of Perfluoropolyether-Based Gas Diffusion Media Preparation for PEM Fuel Cells," Energies, MDPI, vol. 13(7), pages 1-14, April.
    15. Gregor Tavčar & Tomaž Katrašnik, 2013. "An Innovative Hybrid 3D Analytic-Numerical Approach for System Level Modelling of PEM Fuel Cells," Energies, MDPI, vol. 6(10), pages 1-60, October.
    16. Nguyen Duy Vinh & Hyung-Man Kim, 2016. "Comparison of Numerical and Experimental Studies for Flow-Field Optimization Based on Under-Rib Convection in Polymer Electrolyte Membrane Fuel Cells," Energies, MDPI, vol. 9(10), pages 1-17, October.
    17. Devin Fowler & Vladimir Gurau & Daniel Cox, 2019. "Bridging the Gap between Automated Manufacturing of Fuel Cell Components and Robotic Assembly of Fuel Cell Stacks," Energies, MDPI, vol. 12(19), pages 1-14, September.
    18. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    19. Tsai, Shang-Wen & Chen, Yong-Song, 2017. "A mathematical model to study the energy efficiency of a proton exchange membrane fuel cell with a dead-ended anode," Applied Energy, Elsevier, vol. 188(C), pages 151-159.
    20. Huo, Sen & Cooper, Nathanial James & Smith, Travis Lee & Park, Jae Wan & Jiao, Kui, 2017. "Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor," Applied Energy, Elsevier, vol. 203(C), pages 101-114.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:5:p:3179-3203:d:36031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.