IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v220y2018icp562-575.html
   My bibliography  Save this article

Grid-level “battery” operation of chemical processes and demand-side participation in short-term electricity markets

Author

Listed:
  • Otashu, Joannah I.
  • Baldea, Michael

Abstract

The participation of power-intensive industrial chemical processes in short-term electricity markets (STMs) in addition to long-term markets (LTMs) is considered. STMs are highly volatile with dynamics of the order of seconds to minutes. It is thus imperative that production scheduling for chemical process participation in such markets (1) be carried out repeatedly to reflect ongoing changes in market conditions (2) account for process dynamics to guarantee feasibility, since frequent changes in production rate targets imply transient plant operation. To address these challenges, a novel production scheduling framework is formulated, consisting of a fixed-horizon scheduling problem for the LTM and a shrinking-horizon scheduling problem for response to STM changes. A case study illustrates that unused demand response (DR) potential from the LTM can be strategically deployed in STMs to improve grid operations and increase profit for the chemical process.

Suggested Citation

  • Otashu, Joannah I. & Baldea, Michael, 2018. "Grid-level “battery” operation of chemical processes and demand-side participation in short-term electricity markets," Applied Energy, Elsevier, vol. 220(C), pages 562-575.
  • Handle: RePEc:eee:appene:v:220:y:2018:i:c:p:562-575
    DOI: 10.1016/j.apenergy.2018.03.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918303647
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.03.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dowling, Alexander W. & Kumar, Ranjeet & Zavala, Victor M., 2017. "A multi-scale optimization framework for electricity market participation," Applied Energy, Elsevier, vol. 190(C), pages 147-164.
    2. Singh, Nitin & Mohanty, Soumya Ranjan & Dev Shukla, Rishabh, 2017. "Short term electricity price forecast based on environmentally adapted generalized neuron," Energy, Elsevier, vol. 125(C), pages 127-139.
    3. Peter Cramton, 2017. "Electricity market design," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(4), pages 589-612.
    4. Wang, Qi & Zhang, Chunyu & Ding, Yi & Xydis, George & Wang, Jianhui & Østergaard, Jacob, 2015. "Review of real-time electricity markets for integrating Distributed Energy Resources and Demand Response," Applied Energy, Elsevier, vol. 138(C), pages 695-706.
    5. Aghaei, Jamshid & Alizadeh, Mohammad-Iman & Siano, Pierluigi & Heidari, Alireza, 2016. "Contribution of emergency demand response programs in power system reliability," Energy, Elsevier, vol. 103(C), pages 688-696.
    6. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    7. Artigues, Christian & Lopez, Pierre & Haït, Alain, 2013. "The energy scheduling problem: Industrial case-study and constraint propagation techniques," International Journal of Production Economics, Elsevier, vol. 143(1), pages 13-23.
    8. Adamson, Richard & Hobbs, Martin & Silcock, Andy & Willis, Mark J., 2017. "Steady-state optimisation of a multiple cryogenic air separation unit and compressor plant," Applied Energy, Elsevier, vol. 189(C), pages 221-232.
    9. Mingtao Yao & Zhaoguang Hu & Froylan Sifuentes & Ning Zhang, 2015. "Integrated Power Management of Conventional Units and Industrial Loads in China’s Ancillary Services Scheduling," Energies, MDPI, vol. 8(5), pages 1-23, May.
    10. Sila Kiliccote & Daniel Olsen & Michael D. Sohn & Mary Ann Piette, 2016. "Characterization of demand response in the commercial, industrial, and residential sectors in the United States," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(3), pages 288-304, May.
    11. Katrina Jessoe & David Rapson, 2015. "Commercial and Industrial Demand Response Under Mandatory Time-of-Use Electricity Pricing," Journal of Industrial Economics, Wiley Blackwell, vol. 63(3), pages 397-421, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anamarija Falkoni & Antun Pfeifer & Goran Krajačić, 2020. "Vehicle-to-Grid in Standard and Fast Electric Vehicle Charging: Comparison of Renewable Energy Source Utilization and Charging Costs," Energies, MDPI, vol. 13(6), pages 1-22, March.
    2. Hessam Golmohamadi, 2022. "Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    3. Alaperä, Ilari & Honkapuro, Samuli & Paananen, Janne, 2018. "Data centers as a source of dynamic flexibility in smart girds," Applied Energy, Elsevier, vol. 229(C), pages 69-79.
    4. Seo, Kyeongjun & Edgar, Thomas F. & Baldea, Michael, 2020. "Optimal demand response operation of electric boosting glass furnaces," Applied Energy, Elsevier, vol. 269(C).
    5. Otashu, Joannah I. & Baldea, Michael, 2020. "Scheduling chemical processes for frequency regulation," Applied Energy, Elsevier, vol. 260(C).
    6. Herding, Robert & Ross, Emma & Jones, Wayne R. & Charitopoulos, Vassilis M. & Papageorgiou, Lazaros G., 2023. "Stochastic programming approach for optimal day-ahead market bidding curves of a microgrid," Applied Energy, Elsevier, vol. 336(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriella Ferruzzi & Giorgio Graditi & Federico Rossi, 2020. "A joint approach for strategic bidding of a microgrid in energy and spinning reserve markets," Energy & Environment, , vol. 31(1), pages 88-115, February.
    2. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    3. Hussein Jumma Jabir & Jiashen Teh & Dahaman Ishak & Hamza Abunima, 2018. "Impacts of Demand-Side Management on Electrical Power Systems: A Review," Energies, MDPI, vol. 11(5), pages 1-19, April.
    4. Mansourshoar, Paria & Yazdankhah, Ahmad Sadeghi & Vatanpour, Mohsen & Mohammadi-Ivatloo, Behnam, 2022. "Impact of implementing a price-based demand response program on the system reliability in security-constrained unit commitment problem coupled with wind farms in the presence of contingencies," Energy, Elsevier, vol. 255(C).
    5. Burger, Scott & Chaves-Ávila, Jose Pablo & Batlle, Carlos & Pérez-Arriaga, Ignacio J., 2017. "A review of the value of aggregators in electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 395-405.
    6. Banshwar, Anuj & Sharma, Naveen Kumar & Sood, Yog Raj & Shrivastava, Rajnish, 2018. "An international experience of technical and economic aspects of ancillary services in deregulated power industry: Lessons for emerging BRIC electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 774-801.
    7. Sousa, Joana & Soares, Isabel, 2020. "Demand response, market design and risk: A literature review," Utilities Policy, Elsevier, vol. 66(C).
    8. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
    9. Morales-España, Germán & Martínez-Gordón, Rafael & Sijm, Jos, 2022. "Classifying and modelling demand response in power systems," Energy, Elsevier, vol. 242(C).
    10. Ahmed Ismail & Mustafa Baysal, 2023. "Dynamic Pricing Based on Demand Response Using Actor–Critic Agent Reinforcement Learning," Energies, MDPI, vol. 16(14), pages 1-19, July.
    11. Kohlhepp, Peter & Harb, Hassan & Wolisz, Henryk & Waczowicz, Simon & Müller, Dirk & Hagenmeyer, Veit, 2019. "Large-scale grid integration of residential thermal energy storages as demand-side flexibility resource: A review of international field studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 527-547.
    12. Sedzro, Kwami Senam A. & Kishore, Shalinee & Lamadrid, Alberto J. & Zuluaga, Luis F., 2018. "Stochastic risk-sensitive market integration for renewable energy: Application to ocean wave power plants," Applied Energy, Elsevier, vol. 229(C), pages 474-481.
    13. Schreiner, Lena & Madlener, Reinhard, 2022. "Investing in power grid infrastructure as a flexibility option: A DSGE assessment for Germany," Energy Economics, Elsevier, vol. 107(C).
    14. Scott Duke Kominers & Alexander Teytelboym & Vincent P Crawford, 2017. "An invitation to market design," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(4), pages 541-571.
    15. Liu, Xiaoqi & Lee, Seungjae & Bilionis, Ilias & Karava, Panagiota & Joe, Jaewan & Sadeghi, Seyed Amir, 2021. "A user-interactive system for smart thermal environment control in office buildings," Applied Energy, Elsevier, vol. 298(C).
    16. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    17. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    18. Eissa, M.M., 2018. "First time real time incentive demand response program in smart grid with “i-Energy” management system with different resources," Applied Energy, Elsevier, vol. 212(C), pages 607-621.
    19. Kim, Eun-Hwan & Park, Yong-Gi & Roh, Jae Hyung, 2019. "Competitiveness of open-cycle gas turbine and its potential in the future Korean electricity market with high renewable energy mix," Energy Policy, Elsevier, vol. 129(C), pages 1056-1069.
    20. Lork, Clement & Li, Wen-Tai & Qin, Yan & Zhou, Yuren & Yuen, Chau & Tushar, Wayes & Saha, Tapan K., 2020. "An uncertainty-aware deep reinforcement learning framework for residential air conditioning energy management," Applied Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:220:y:2018:i:c:p:562-575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.