IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v229y2018icp69-79.html
   My bibliography  Save this article

Data centers as a source of dynamic flexibility in smart girds

Author

Listed:
  • Alaperä, Ilari
  • Honkapuro, Samuli
  • Paananen, Janne

Abstract

Data centers have a significant potential to become a major source of flexibility in smart girds. They consume currently roughly 3% of all the electricity produced globally and are expected to only increase their consumption as the world becomes more connected and digitalized.

Suggested Citation

  • Alaperä, Ilari & Honkapuro, Samuli & Paananen, Janne, 2018. "Data centers as a source of dynamic flexibility in smart girds," Applied Energy, Elsevier, vol. 229(C), pages 69-79.
  • Handle: RePEc:eee:appene:v:229:y:2018:i:c:p:69-79
    DOI: 10.1016/j.apenergy.2018.07.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918310845
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.07.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Menglian & Wang, Xinhao & Meinrenken, Christoph J. & Ding, Yi, 2018. "Economic and environmental benefits of coordinating dispatch among distributed electricity storage," Applied Energy, Elsevier, vol. 210(C), pages 842-855.
    2. Mamun, A. & Sivasubramaniam, A. & Fathy, H.K., 2018. "Collective learning of lithium-ion aging model parameters for battery health-conscious demand response in datacenters," Energy, Elsevier, vol. 154(C), pages 80-95.
    3. Ramin, D. & Spinelli, S. & Brusaferri, A., 2018. "Demand-side management via optimal production scheduling in power-intensive industries: The case of metal casting process," Applied Energy, Elsevier, vol. 225(C), pages 622-636.
    4. Muhssin, Mazin T. & Cipcigan, Liana M. & Sami, Saif Sabah & Obaid, Zeyad Assi, 2018. "Potential of demand side response aggregation for the stabilization of the grids frequency," Applied Energy, Elsevier, vol. 220(C), pages 643-656.
    5. Rui Li & Nan Li & Jiahui Li & Chongfeng Wu, 2018. "Short selling, margin buying and stock return in China market," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(2), pages 477-501, June.
    6. Yin, Rongxin & Kara, Emre C. & Li, Yaping & DeForest, Nicholas & Wang, Ke & Yong, Taiyou & Stadler, Michael, 2016. "Quantifying flexibility of commercial and residential loads for demand response using setpoint changes," Applied Energy, Elsevier, vol. 177(C), pages 149-164.
    7. Jia, Hongjie & Li, Xiaomeng & Mu, Yunfei & Xu, Chen & Jiang, Yilang & Yu, Xiaodan & Wu, Jianzhong & Dong, Chaoyu, 2018. "Coordinated control for EV aggregators and power plants in frequency regulation considering time-varying delays," Applied Energy, Elsevier, vol. 210(C), pages 1363-1376.
    8. Otashu, Joannah I. & Baldea, Michael, 2018. "Grid-level “battery” operation of chemical processes and demand-side participation in short-term electricity markets," Applied Energy, Elsevier, vol. 220(C), pages 562-575.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Sirui & Li, Peng & Ji, Haoran & Yu, Hao & Yan, Jinyue & Wu, Jianzhong & Wang, Chengshan, 2021. "Operational flexibility of active distribution networks with the potential from data centers," Applied Energy, Elsevier, vol. 293(C).
    2. Zhao, Yongliang & Liu, Ming & Wang, Chaoyang & Wang, Zhu & Chong, Daotong & Yan, Junjie, 2019. "Exergy analysis of the regulating measures of operational flexibility in supercritical coal-fired power plants during transient processes," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Andreea Valeria Vesa & Tudor Cioara & Ionut Anghel & Marcel Antal & Claudia Pop & Bogdan Iancu & Ioan Salomie & Vasile Teodor Dadarlat, 2020. "Energy Flexibility Prediction for Data Center Engagement in Demand Response Programs," Sustainability, MDPI, vol. 12(4), pages 1-23, February.
    4. Niko Karhula & Seppo Sierla & Valeriy Vyatkin, 2021. "Validating the Real-Time Performance of Distributed Energy Resources Participating on Primary Frequency Reserves," Energies, MDPI, vol. 14(21), pages 1-19, October.
    5. Jerez Monsalves, Juan & Bergaentzlé, Claire & Keles, Dogan, 2023. "Impacts of flexible-cooling and waste-heat recovery from data centres on energy systems: A Danish case study," Energy, Elsevier, vol. 281(C).
    6. Chen, Boyu & Che, Yanbo & Zheng, Zhihao & Zhao, Shuaijun, 2023. "Multi-objective robust optimal bidding strategy for a data center operator based on bi-level optimization," Energy, Elsevier, vol. 269(C).
    7. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu & Shen, Boyang, 2022. "A 10 MW class data center with ultra-dense high-efficiency energy distribution: Design and economic evaluation of superconducting DC busbar networks," Energy, Elsevier, vol. 250(C).
    8. Al Kez, Dlzar & Foley, Aoife M. & Ahmed, Faraedoon W. & O'Malley, Mark & Muyeen, S.M., 2021. "Potential of data centers for fast frequency response services in synchronously isolated power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    9. Perera, A.T.D. & Nik, Vahid M. & Wickramasinghe, P.U. & Scartezzini, Jean-Louis, 2019. "Redefining energy system flexibility for distributed energy system design," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Wang, Wei & Abdolrashidi, Amirali & Yu, Nanpeng & Wong, Daniel, 2019. "Frequency regulation service provision in data center with computational flexibility," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    11. Bao, Yi & Xu, Jian & Feng, Wei & Sun, Yuanzhang & Liao, Siyang & Yin, Rongxin & Jiang, Yazhou & Jin, Ming & Marnay, Chris, 2019. "Provision of secondary frequency regulation by coordinated dispatch of industrial loads and thermal power plants," Applied Energy, Elsevier, vol. 241(C), pages 302-312.
    12. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    13. Ye, Guisen & Gao, Feng & Fang, Jingyang, 2022. "A mission-driven two-step virtual machine commitment for energy saving of modern data centers through UPS and server coordinated optimizations," Applied Energy, Elsevier, vol. 322(C).
    14. Fan, Shuai & Liu, Jiang & Wu, Qing & Cui, Mingjian & Zhou, Huan & He, Guangyu, 2020. "Optimal coordination of virtual power plant with photovoltaics and electric vehicles: A temporally coupled distributed online algorithm," Applied Energy, Elsevier, vol. 277(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hessam Golmohamadi, 2022. "Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    2. Xu, Fangyuan & Wu, Wanli & Zhao, Fei & Zhou, Ya & Wang, Yongjian & Wu, Runji & Zhang, Tao & Wen, Yongchen & Fan, Yiliang & Jiang, Shengli, 2019. "A micro-market module design for university demand-side management using self-crossover genetic algorithms," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    3. Otashu, Joannah I. & Baldea, Michael, 2020. "Scheduling chemical processes for frequency regulation," Applied Energy, Elsevier, vol. 260(C).
    4. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    5. Shunyong Yin & Jianjun Xia & Yi Jiang, 2020. "Characteristics Analysis of the Heat-to-Power Ratio from the Supply and Demand Sides of Cities in Northern China," Energies, MDPI, vol. 13(1), pages 1-14, January.
    6. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.
    7. Ding, Yihong & Tan, Qinliang & Shan, Zijing & Han, Jian & Zhang, Yimei, 2023. "A two-stage dispatching optimization strategy for hybrid renewable energy system with low-carbon and sustainability in ancillary service market," Renewable Energy, Elsevier, vol. 207(C), pages 647-659.
    8. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    9. Hossein Shayeghi & Elnaz Shahryari & Mohammad Moradzadeh & Pierluigi Siano, 2019. "A Survey on Microgrid Energy Management Considering Flexible Energy Sources," Energies, MDPI, vol. 12(11), pages 1-26, June.
    10. Wei, Congying & Xu, Jian & Liao, Siyang & Sun, Yuanzhang & Jiang, Yibo & Ke, Deping & Zhang, Zhen & Wang, Jing, 2018. "A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy," Applied Energy, Elsevier, vol. 224(C), pages 659-670.
    11. Tang, Yi & Li, Feng & Chen, Qian & Li, Mengya & Wang, Qi & Ni, Ming & Chen, Gang, 2018. "Frequency prediction method considering demand response aggregate characteristics and control effects," Applied Energy, Elsevier, vol. 229(C), pages 936-944.
    12. Behboodi, Sahand & Chassin, David P. & Djilali, Ned & Crawford, Curran, 2018. "Transactive control of fast-acting demand response based on thermostatic loads in real-time retail electricity markets," Applied Energy, Elsevier, vol. 210(C), pages 1310-1320.
    13. Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.
    14. Awan, Muhammad Bilal & Sun, Yongjun & Lin, Wenye & Ma, Zhenjun, 2023. "A framework to formulate and aggregate performance indicators to quantify building energy flexibility," Applied Energy, Elsevier, vol. 349(C).
    15. Fan, Yi & Gao, Yang, 2024. "Short selling, informational efficiency, and extreme stock price adjustment," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 1009-1028.
    16. Richstein, Jörn C. & Hosseinioun, Seyed Saeed, 2020. "Industrial demand response: How network tariffs and regulation (do not) impact flexibility provision in electricity markets and reserves," Applied Energy, Elsevier, vol. 278(C).
    17. Luo, Lizi & Gu, Wei & Wu, Zhi & Zhou, Suyang, 2019. "Joint planning of distributed generation and electric vehicle charging stations considering real-time charging navigation," Applied Energy, Elsevier, vol. 242(C), pages 1274-1284.
    18. Li, Yang & Yang, Zhen & Li, Guoqing & Mu, Yunfei & Zhao, Dongbo & Chen, Chen & Shen, Bo, 2018. "Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multi-stakeholder scenarios: A bi-level programming approach via real-time pricing," Applied Energy, Elsevier, vol. 232(C), pages 54-68.
    19. Simona-Vasilica Oprea & Adela Bâra & Răzvan Cristian Marales & Margareta-Stela Florescu, 2021. "Data Model for Residential and Commercial Buildings. Load Flexibility Assessment in Smart Cities," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    20. Baxter Williams & Daniel Bishop & Patricio Gallardo & J. Geoffrey Chase, 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations," Energies, MDPI, vol. 16(13), pages 1-28, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:229:y:2018:i:c:p:69-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.