IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v213y2018icp573-584.html
   My bibliography  Save this article

Asymptotic analysis for the inlet relative humidity effects on the performance of proton exchange membrane fuel cell

Author

Listed:
  • Liu, Yongfeng
  • Fan, Lei
  • Pei, Pucheng
  • Yao, Shengzhuo
  • Wang, Fang

Abstract

In order to study the inlet relative humidity (RH) effects on the performance of proton exchange membrane fuel cell (PEMFC), the inlet humidification efficiency (IHE) model is proposed. The total water content of PEMFC is consisted of two parts including the internal electro-migration water content and the external water content of the humidified gas. The dynamic inlet humidification efficiency is derived. The current density of PEMFC is calculated by the incorporating parameters including inlet humidification efficiency and water content of the humidified gas in the IHE model. Firstly, the schedule diagram of calculation is given and the geometric model is established according to actual size of PEMFC. The computational meshes are partitioned by using the software (Gambit). The IHE model is imported into the computational fluid dynamics software (Fluent). Secondly, the experimental system is established and experiments have been done at the operating temperature of 70 °C and at 40% RH, 55% RH, 70% RH, 85% RH and 100% RH, respectively. Finally, the contours of H2O molar concentrations (both in anode channels and cathode channels), membrane water content (MWC) and polarization curves of the IHE model, the Fluent model and experimental are compared and analyzed at above experimental conditions. The results show that the species distribution uniformities of the IHE model such as H2O molar concentrations (both in anode channels and cathode channels) and MWC are the best when the PEMFC at 100% RH. When the operating temperature is 70 °C (40% RH and 350mA/cm2), the accuracy of the IHE model is improved by 79% compared with the Fluent model. When the operating temperature is 70 °C (40% RH and 350mA/cm2), the inlet humidification efficiency reaches 57%.

Suggested Citation

  • Liu, Yongfeng & Fan, Lei & Pei, Pucheng & Yao, Shengzhuo & Wang, Fang, 2018. "Asymptotic analysis for the inlet relative humidity effects on the performance of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 213(C), pages 573-584.
  • Handle: RePEc:eee:appene:v:213:y:2018:i:c:p:573-584
    DOI: 10.1016/j.apenergy.2017.11.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917315878
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.11.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Huicui & Pei, Pucheng & Song, Mancun, 2015. "Lifetime prediction and the economic lifetime of Proton Exchange Membrane fuel cells," Applied Energy, Elsevier, vol. 142(C), pages 154-163.
    2. Simons, Andrew & Bauer, Christian, 2015. "A life-cycle perspective on automotive fuel cells," Applied Energy, Elsevier, vol. 157(C), pages 884-896.
    3. Jeon, Seung Won & Cha, Dowon & Kim, Hyung Soon & Kim, Yongchan, 2016. "Analysis of the system efficiency of an intermediate temperature proton exchange membrane fuel cell at elevated temperature and relative humidity conditions," Applied Energy, Elsevier, vol. 166(C), pages 165-173.
    4. Li, Yuehua & Pei, Pucheng & Wu, Ziyao & Xu, Huachi & Chen, Dongfang & Huang, Shangwei, 2017. "Novel approach to determine cathode two-phase-flow pressure drop of proton exchange membrane fuel cell and its application on water management," Applied Energy, Elsevier, vol. 190(C), pages 713-724.
    5. Di Marcoberardino, Gioele & Roses, Leonardo & Manzolini, Giampaolo, 2016. "Technical assessment of a micro-cogeneration system based on polymer electrolyte membrane fuel cell and fluidized bed autothermal reformer," Applied Energy, Elsevier, vol. 162(C), pages 231-244.
    6. Tang, Hong-Yue & Santamaria, Anthony D. & Bachman, John & Park, Jae Wan, 2013. "Vacuum-assisted drying of polymer electrolyte membrane fuel cell," Applied Energy, Elsevier, vol. 107(C), pages 264-270.
    7. Zhang, Qian & Lin, Rui & Técher, Ludovic & Cui, Xin, 2016. "Experimental study of variable operating parameters effects on overall PEMFC performance and spatial performance distribution," Energy, Elsevier, vol. 115(P1), pages 550-560.
    8. Zhang, Lei & Kim, Jenny & Zhang, Jiujun & Nan, Feihong & Gauquelin, Nicolas & Botton, Gianluigi A. & He, Ping & Bashyam, Rajesh & Knights, Shanna, 2013. "Ti4O7 supported Ru@Pt core–shell catalyst for CO-tolerance in PEM fuel cell hydrogen oxidation reaction," Applied Energy, Elsevier, vol. 103(C), pages 507-513.
    9. Sun, Hong & Xie, Chen & Chen, Hao & Almheiri, Saif, 2015. "A numerical study on the effects of temperature and mass transfer in high temperature PEM fuel cells with ab-PBI membrane," Applied Energy, Elsevier, vol. 160(C), pages 937-944.
    10. Pei, Pucheng & Li, Yuehua & Xu, Huachi & Wu, Ziyao, 2016. "A review on water fault diagnosis of PEMFC associated with the pressure drop," Applied Energy, Elsevier, vol. 173(C), pages 366-385.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Chen & Yan, Xiaohui & Wei, Guanghua & Ke, Changchun & Shen, Shuiyun & Zhang, Junliang, 2019. "Optimization of configurations and cathode operating parameters on liquid-cooled proton exchange membrane fuel cell stacks by orthogonal method," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Lei Fan & Jianhua Gao & Yanda Lu & Wei Shen & Su Zhou, 2023. "Empirical Degradation Models of the Different Indexes of the Proton Exchange Membrane Fuel Cell Based on the Component Degradation," Energies, MDPI, vol. 16(24), pages 1-19, December.
    3. Wei Shen & Lei Fan & Zhirong Pan & Chunguang Chen & Ning Wang & Su Zhou, 2022. "Comparison of Different Topologies of Thermal Management Subsystems in Multi-Stack Fuel Cell Systems," Energies, MDPI, vol. 15(14), pages 1-16, July.
    4. Chen, Huicui & Zhao, Xin & Qu, Bingwang & Zhang, Tong & Pei, Pucheng & Li, Congxin, 2018. "An evaluation method of gas distribution quality in dynamic process of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 232(C), pages 26-35.
    5. Lu Zhang & Yongfeng Liu & Pucheng Pei & Xintong Liu & Long Wang & Yuan Wan, 2022. "Variation Characteristic Analysis of Water Content at the Flow Channel of Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 15(9), pages 1-20, April.
    6. Zhou, Su & Fan, Lei & Zhang, Gang & Gao, Jianhua & Lu, Yanda & Zhao, Peng & Wen, Chaokai & Shi, Lin & Hu, Zhe, 2022. "A review on proton exchange membrane multi-stack fuel cell systems: architecture, performance, and power management," Applied Energy, Elsevier, vol. 310(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pei, Pucheng & Ren, Peng & Li, Yuehua & Wu, Ziyao & Chen, Dongfang & Huang, Shangwei & Jia, Xiaoning, 2019. "Numerical studies on wide-operating-range ejector based on anodic pressure drop characteristics in proton exchange membrane fuel cell system," Applied Energy, Elsevier, vol. 235(C), pages 729-738.
    2. Li, Zhongliang & Outbib, Rachid & Giurgea, Stefan & Hissel, Daniel & Jemei, Samir & Giraud, Alain & Rosini, Sebastien, 2016. "Online implementation of SVM based fault diagnosis strategy for PEMFC systems," Applied Energy, Elsevier, vol. 164(C), pages 284-293.
    3. Lin, Rui & Zhong, Di & Lan, Shunbo & Guo, Rong & Ma, Yunyang & Cai, Xin, 2021. "Experimental validation for enhancement of PEMFC cold start performance: Based on the optimization of micro porous layer," Applied Energy, Elsevier, vol. 300(C).
    4. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Wu, Ziyao & Chen, Dongfang & Huang, Hao, 2019. "Characteristic analysis in lowering current density based on pressure drop for avoiding flooding in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 248(C), pages 321-329.
    5. Ren, Peng & Pei, Pucheng & Li, Yuehua & Wu, Ziyao & Chen, Dongfang & Huang, Shangwei & Jia, Xiaoning, 2019. "Diagnosis of water failures in proton exchange membrane fuel cell with zero-phase ohmic resistance and fixed-low-frequency impedance," Applied Energy, Elsevier, vol. 239(C), pages 785-792.
    6. Bai, Fan & Quan, Hong-Bing & Yin, Ren-Jie & Zhang, Zhuo & Jin, Shu-Qi & He, Pu & Mu, Yu-Tong & Gong, Xiao-Ming & Tao, Wen-Quan, 2022. "Three-dimensional multi-field digital twin technology for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 324(C).
    7. Li, Yuehua & Pei, Pucheng & Wu, Ziyao & Ren, Peng & Jia, Xiaoning & Chen, Dongfang & Huang, Shangwei, 2018. "Approaches to avoid flooding in association with pressure drop in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 224(C), pages 42-51.
    8. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Huang, Hao, 2020. "Analysis of air compression, progress of compressor and control for optimal energy efficiency in proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    9. Han, Jaeyoung & Yu, Sangseok & Yi, Sun, 2017. "Adaptive control for robust air flow management in an automotive fuel cell system," Applied Energy, Elsevier, vol. 190(C), pages 73-83.
    10. Yanzhou Qin & Xuefeng Wang & Rouxian Chen & Xiang Shangguan, 2018. "Water Transport and Removal in PEMFC Gas Flow Channel with Various Water Droplet Locations and Channel Surface Wettability," Energies, MDPI, vol. 11(4), pages 1-17, April.
    11. Hasheminasab, M. & Kermani, M.J. & Nourazar, S.S. & Khodsiani, M.H., 2020. "A novel experimental based statistical study for water management in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 264(C).
    12. Pei, Pucheng & Wu, Ziyao & Li, Yuehua & Jia, Xiaoning & Chen, Dongfang & Huang, Shangwei, 2018. "Improved methods to measure hydrogen crossover current in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 215(C), pages 338-347.
    13. Alessandro Arrigoni & Valeria Arosio & Andrea Basso Peressut & Saverio Latorrata & Giovanni Dotelli, 2022. "Greenhouse Gas Implications of Extending the Service Life of PEM Fuel Cells for Automotive Applications: A Life Cycle Assessment," Clean Technol., MDPI, vol. 4(1), pages 1-17, February.
    14. Ewa Janicka & Michal Mielniczek & Lukasz Gawel & Kazimierz Darowicki, 2021. "Optimization of the Relative Humidity of Reactant Gases in Hydrogen Fuel Cells Using Dynamic Impedance Measurements," Energies, MDPI, vol. 14(11), pages 1-11, May.
    15. Yang, Zirong & Du, Qing & Jia, Zhiwei & Yang, Chunguang & Jiao, Kui, 2019. "Effects of operating conditions on water and heat management by a transient multi-dimensional PEMFC system model," Energy, Elsevier, vol. 183(C), pages 462-476.
    16. Chen, Huicui & He, Yuxiang & Zhang, Xinfeng & Zhao, Xin & Zhang, Tong & Pei, Pucheng, 2018. "A method to study the intake consistency of the dual-stack polymer electrolyte membrane fuel cell system under dynamic operating conditions," Applied Energy, Elsevier, vol. 231(C), pages 1050-1058.
    17. Lin, Rui & Zhu, Yike & Ni, Meng & Jiang, Zhenghua & Lou, Diming & Han, Lihang & Zhong, Di, 2019. "Consistency analysis of polymer electrolyte membrane fuel cell stack during cold start," Applied Energy, Elsevier, vol. 241(C), pages 420-432.
    18. Nadia Belmonte & Carlo Luetto & Stefano Staulo & Paola Rizzi & Marcello Baricco, 2017. "Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications," Challenges, MDPI, vol. 8(1), pages 1-15, March.
    19. Najmi, Aezid-Ul-Hassan & Anyanwu, Ikechukwu S. & Xie, Xu & Liu, Zhi & Jiao, Kui, 2021. "Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields," Energy, Elsevier, vol. 217(C).
    20. Sanghyun Yun & Jinwon Yun & Jaeyoung Han, 2023. "Development of a 470-Horsepower Fuel Cell–Battery Hybrid Xcient Dynamic Model Using Simscape TM," Energies, MDPI, vol. 16(24), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:213:y:2018:i:c:p:573-584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.