IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v173y2016icp366-385.html
   My bibliography  Save this article

A review on water fault diagnosis of PEMFC associated with the pressure drop

Author

Listed:
  • Pei, Pucheng
  • Li, Yuehua
  • Xu, Huachi
  • Wu, Ziyao

Abstract

The pressure difference between the inlet and outlet of the reactant in fuel cells is called the pressure drop, which is related to the water amount inside the fuel cells. In recent years there have been many studies that used the pressure drop to detect the water content and diagnose water fault of proton exchange membrane fuel cells (PEMFCs). To our knowledge, there has not been a systematic review of these studies. In this paper, the effect variables of pressure drop are reviewed firstly. Then estimations of the theoretical pressure drop are reviewed mainly based on the following four aspects: Bernoulli’s equation, two-phase flow multiplier, Darcy’s law and artificial intelligence. Afterward, the water fault diagnosis based on the pressure drop using the following six indicators are reviewed: indicator of direct pressure drop, its deviation, frequency, multiplier, the ratio of pressure drop to flow rate and the flooding degree. In addition, the strategies of water fault recovery are also summarized. Finally the merits, demerits and application prospects of pressure drop-based water fault diagnosis are presented.

Suggested Citation

  • Pei, Pucheng & Li, Yuehua & Xu, Huachi & Wu, Ziyao, 2016. "A review on water fault diagnosis of PEMFC associated with the pressure drop," Applied Energy, Elsevier, vol. 173(C), pages 366-385.
  • Handle: RePEc:eee:appene:v:173:y:2016:i:c:p:366-385
    DOI: 10.1016/j.apenergy.2016.04.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916305001
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.04.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steiner, N. Yousfi & Candusso, D. & Hissel, D. & Moçoteguy, P., 2010. "Model-based diagnosis for proton exchange membrane fuel cells," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(2), pages 158-170.
    2. Park, Jae Wan & Jiao, Kui & Li, Xianguo, 2010. "Numerical investigations on liquid water removal from the porous gas diffusion layer by reactant flow," Applied Energy, Elsevier, vol. 87(7), pages 2180-2186, July.
    3. Sasmito, Agus P. & Kurnia, Jundika C. & Mujumdar, Arun S., 2012. "Numerical evaluation of various gas and coolant channel designs for high performance liquid-cooled proton exchange membrane fuel cell stacks," Energy, Elsevier, vol. 44(1), pages 278-291.
    4. Shao, Meng & Zhu, Xin-Jian & Cao, Hong-Fei & Shen, Hai-Feng, 2014. "An artificial neural network ensemble method for fault diagnosis of proton exchange membrane fuel cell system," Energy, Elsevier, vol. 67(C), pages 268-275.
    5. Jiao, Kui & Park, Jaewan & Li, Xianguo, 2010. "Experimental investigations on liquid water removal from the gas diffusion layer by reactant flow in a PEM fuel cell," Applied Energy, Elsevier, vol. 87(9), pages 2770-2777, September.
    6. Xing, Lei & Du, Shangfeng & Chen, Rui & Mamlouk, Mohamed & Scott, Keith, 2016. "Anode partial flooding modelling of proton exchange membrane fuel cells: Model development and validation," Energy, Elsevier, vol. 96(C), pages 80-95.
    7. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    8. Qin, Yanzhou & Li, Xianguo & Jiao, Kui & Du, Qing & Yin, Yan, 2014. "Effective removal and transport of water in a PEM fuel cell flow channel having a hydrophilic plate," Applied Energy, Elsevier, vol. 113(C), pages 116-126.
    9. Raza, Syed Shabbar & Janajreh, Isam & Ghenai, Chaouki, 2014. "Sustainability index approach as a selection criteria for energy storage system of an intermittent renewable energy source," Applied Energy, Elsevier, vol. 136(C), pages 909-920.
    10. Mortazavi, Mehdi & Tajiri, Kazuya, 2015. "Two-phase flow pressure drop in flow channels of proton exchange membrane fuel cells: Review of experimental approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 296-317.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soopee, Asif & Sasmito, Agus P. & Shamim, Tariq, 2019. "Water droplet dynamics in a dead-end anode proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 233, pages 300-311.
    2. Zhao, Jian & Shahgaldi, Samaneh & Alaefour, Ibrahim & Xu, Qian & Li, Xianguo, 2018. "Gas permeability of catalyzed electrodes in polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 209(C), pages 203-210.
    3. Oh, Hwanyeong & Park, Jaeman & Min, Kyoungdoug & Lee, Eunsook & Jyoung, Jy-Young, 2015. "Effects of pore size gradient in the substrate of a gas diffusion layer on the performance of a proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 149(C), pages 186-193.
    4. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    5. Zhou, Zihan & Qiu, Diankai & Zhai, Shuang & Peng, Linfa & Lai, Xinmin, 2020. "Investigation of the assembly for high-power proton exchange membrane fuel cell stacks through an efficient equivalent model," Applied Energy, Elsevier, vol. 277(C).
    6. Ferreira, Rui B. & Falcão, D.S. & Oliveira, V.B. & Pinto, A.M.F.R., 2017. "1D+3D two-phase flow numerical model of a proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 203(C), pages 474-495.
    7. Yanzhou Qin & Xuefeng Wang & Rouxian Chen & Xiang Shangguan, 2018. "Water Transport and Removal in PEMFC Gas Flow Channel with Various Water Droplet Locations and Channel Surface Wettability," Energies, MDPI, vol. 11(4), pages 1-17, April.
    8. Majlan, E.H. & Rohendi, D. & Daud, W.R.W. & Husaini, T. & Haque, M.A., 2018. "Electrode for proton exchange membrane fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 117-134.
    9. Li, Yuehua & Pei, Pucheng & Wu, Ziyao & Xu, Huachi & Chen, Dongfang & Huang, Shangwei, 2017. "Novel approach to determine cathode two-phase-flow pressure drop of proton exchange membrane fuel cell and its application on water management," Applied Energy, Elsevier, vol. 190(C), pages 713-724.
    10. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Wu, Ziyao & Chen, Dongfang & Huang, Hao, 2019. "Characteristic analysis in lowering current density based on pressure drop for avoiding flooding in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 248(C), pages 321-329.
    11. Wu, Kangcheng & Du, Qing & Zu, Bingfeng & Wang, Yupeng & Cai, Jun & Gu, Xin & Xuan, Jin & Jiao, Kui, 2021. "Enabling real-time optimization of dynamic processes of proton exchange membrane fuel cell: Data-driven approach with semi-recurrent sliding window method," Applied Energy, Elsevier, vol. 303(C).
    12. Kurnia, Jundika C. & Sasmito, Agus P. & Shamim, Tariq, 2017. "Performance evaluation of a PEM fuel cell stack with variable inlet flows under simulated driving cycle conditions," Applied Energy, Elsevier, vol. 206(C), pages 751-764.
    13. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    14. Akira Nishimura & Tatsuya Okado & Yuya Kojima & Masafumi Hirota & Eric Hu, 2020. "Impact of MPL on Temperature Distribution in Single Polymer Electrolyte Fuel Cell with Various Thicknesses of Polymer Electrolyte Membrane," Energies, MDPI, vol. 13(10), pages 1-17, May.
    15. Jiao, Kui & Bachman, John & Zhou, Yibo & Park, Jae Wan, 2014. "Effect of induced cross flow on flow pattern and performance of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 115(C), pages 75-82.
    16. Lin, Chen & Yan, Xiaohui & Wei, Guanghua & Ke, Changchun & Shen, Shuiyun & Zhang, Junliang, 2019. "Optimization of configurations and cathode operating parameters on liquid-cooled proton exchange membrane fuel cell stacks by orthogonal method," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    17. Kong, Im Mo & Jung, Aeri & Kim, Young Sang & Kim, Min Soo, 2017. "Numerical investigation on double gas diffusion backing layer functionalized on water removal in a proton exchange membrane fuel cell," Energy, Elsevier, vol. 120(C), pages 478-487.
    18. Yan, Xiaohui & Lin, Chen & Zheng, Zhifeng & Chen, Junren & Wei, Guanghua & Zhang, Junliang, 2020. "Effect of clamping pressure on liquid-cooled PEMFC stack performance considering inhomogeneous gas diffusion layer compression," Applied Energy, Elsevier, vol. 258(C).
    19. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    20. Wu, Horng-Wen & Ku, Hui-Wen, 2011. "The optimal parameters estimation for rectangular cylinders installed transversely in the flow channel of PEMFC from a three-dimensional PEMFC model and the Taguchi method," Applied Energy, Elsevier, vol. 88(12), pages 4879-4890.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:173:y:2016:i:c:p:366-385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.