IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v184y2016icp353-364.html
   My bibliography  Save this article

Global warming potential and energy analysis of second generation ethanol production from rice straw in India

Author

Listed:
  • Soam, Shveta
  • Kapoor, Manali
  • Kumar, Ravindra
  • Borjesson, Pal
  • Gupta, Ravi P.
  • Tuli, Deepak K.

Abstract

The environmental sustainability of cellulosic ethanol production from rice straw in India is conducted using life cycle assessment (LCA). Greenhouse gas (GHG) emissions, net energy ratio (NER) and net energy balance (NEB) are studied for ethanol production system using two diverse pretreatment technologies, i.e. dilute acid (DA) and steam explosion (SE) followed by separate hydrolysis and fermentation. 1ton of rice straw is the reference flow of study and 1MJ transportation fuel is the functional unit while comparing the results with gasoline. The inventory data is collected based on several experiments conducted at our pilot plant and is a novel contribution to country specific LCA. Using DA and SE, the ethanol yields from the processing of 1ton straw are 239 and 253L and life cycle GHG emissions are 292 and 288kgCO2eq./ton straw respectively. The results indicated that production of enzyme used in hydrolysis is the major contributor to GHG emissions in both DA (54%) and SE (57%) methods of ethanol production. The net energy input during the life cycle of ethanol is 1736 and 1377MJ/ton straw in DA and SE respectively. The major GHG emissions and energy benefits are obtained using lignin produced in the plant to generate electricity resulting in displacement of the coal based electricity. With a higher xylose recovery in the SE, it gives larger amount of ethanol and also generates more surplus electricity. Enzyme production and its use are identified as GHG emission and energy consumption hotspot in the ethanol production process. While comparing the results with gasoline, DA and SE resulted in a reduction of 77 and 89% GHG emissions and NER of 2.3 and 2.7 respectively. The E5 blending would reduce GHG emissions by 4.3% (DA) and 4.8% (SE) whereas; E20 blend would lead to a reduction of 17.4% (DA) and 18.8% (SE) respectively. Sensitivity analysis indicates that with every 12.5% increase in the price of rice straw from the base case, there is a 2.3% increase in GHG emissions and vice versa. 1FPU/g WIS increase during hydrolysis gives 2.9% increase in ethanol production, but at the same time there is an increase of 5% emissions from enzyme production. The results of the study conclude that cellulosic ethanol production technology in India is sustainable from GHG reduction and energy efficiency perspective.

Suggested Citation

  • Soam, Shveta & Kapoor, Manali & Kumar, Ravindra & Borjesson, Pal & Gupta, Ravi P. & Tuli, Deepak K., 2016. "Global warming potential and energy analysis of second generation ethanol production from rice straw in India," Applied Energy, Elsevier, vol. 184(C), pages 353-364.
  • Handle: RePEc:eee:appene:v:184:y:2016:i:c:p:353-364
    DOI: 10.1016/j.apenergy.2016.10.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916314738
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.10.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Lin & van der Voet, Ester & Huppes, Gjalt, 2009. "An energy analysis of ethanol from cellulosic feedstock-Corn stover," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2003-2011, October.
    2. Jonker, J.G.G. & Junginger, H.M. & Verstegen, J.A. & Lin, T. & Rodríguez, L.F. & Ting, K.C. & Faaij, A.P.C. & van der Hilst, F., 2016. "Supply chain optimization of sugarcane first generation and eucalyptus second generation ethanol production in Brazil," Applied Energy, Elsevier, vol. 173(C), pages 494-510.
    3. Wang, Lei & Littlewood, Jade & Murphy, Richard J., 2013. "Environmental sustainability of bioethanol production from wheat straw in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 715-725.
    4. Khatiwada, Dilip & Venkata, Bharadwaj K. & Silveira, Semida & Johnson, Francis X., 2016. "Energy and GHG balances of ethanol production from cane molasses in Indonesia," Applied Energy, Elsevier, vol. 164(C), pages 756-768.
    5. Dominković, D.F. & Bačeković, I. & Ćosić, B. & Krajačić, G. & Pukšec, T. & Duić, N. & Markovska, N., 2016. "Zero carbon energy system of South East Europe in 2050," Applied Energy, Elsevier, vol. 184(C), pages 1517-1528.
    6. Saga, Kiyotaka & Imou, Kenji & Yokoyama, Shinya & Minowa, Tomoaki, 2010. "Net energy analysis of bioethanol production system from high-yield rice plant in Japan," Applied Energy, Elsevier, vol. 87(7), pages 2164-2168, July.
    7. Agostinho, Feni & Bertaglia, Ana B.B. & Almeida, Cecília M.V.B. & Giannetti, Biagio F., 2015. "Influence of cellulase enzyme production on the energetic–environmental performance of lignocellulosic ethanol," Ecological Modelling, Elsevier, vol. 315(C), pages 46-56.
    8. McKechnie, Jon & Pourbafrani, Mohammad & Saville, Bradley A. & MacLean, Heather L., 2015. "Exploring impacts of process technology development and regional factors on life cycle greenhouse gas emissions of corn stover ethanol," Renewable Energy, Elsevier, vol. 76(C), pages 726-734.
    9. Zech, Konstantin M. & Meisel, Kathleen & Brosowski, André & Toft, Lars Villadsgaard & Müller-Langer, Franziska, 2016. "Environmental and economic assessment of the Inbicon lignocellulosic ethanol technology," Applied Energy, Elsevier, vol. 171(C), pages 347-356.
    10. Soam, Shveta & Kumar, Ravindra & Gupta, Ravi P. & Sharma, Pankaj K. & Tuli, Deepak K. & Das, Biswapriya, 2015. "Life cycle assessment of fuel ethanol from sugarcane molasses in northern and western India and its impact on Indian biofuel programme," Energy, Elsevier, vol. 83(C), pages 307-315.
    11. Singh, Renu & Srivastava, Monika & Shukla, Ashish, 2016. "Environmental sustainability of bioethanol production from rice straw in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 202-216.
    12. Ekman, Anna & Wallberg, Ola & Joelsson, Elisabeth & Börjesson, Pål, 2013. "Possibilities for sustainable biorefineries based on agricultural residues – A case study of potential straw-based ethanol production in Sweden," Applied Energy, Elsevier, vol. 102(C), pages 299-308.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siti Norliyana Harun & Marlia Mohd Hanafiah & Noorashikin Md Noor, 2022. "Rice Straw Utilisation for Bioenergy Production: A Brief Overview," Energies, MDPI, vol. 15(15), pages 1-17, July.
    2. Smullen, Emma & Finnan, John & Dowling, David & Mulcahy, Patricia, 2019. "The environmental performance of pretreatment technologies for the bioconversion of lignocellulosic biomass to ethanol," Renewable Energy, Elsevier, vol. 142(C), pages 527-534.
    3. Sylvia Haus & Lovisa Björnsson & Pål Börjesson, 2020. "Lignocellulosic Ethanol in a Greenhouse Gas Emission Reduction Obligation System—A Case Study of Swedish Sawdust Based-Ethanol Production," Energies, MDPI, vol. 13(5), pages 1-15, February.
    4. Fang, Guochang & Tian, Lixin & Fu, Min & Sun, Mei & Du, Ruijin & Lu, Longxi & He, Yu, 2017. "The effect of energy construction adjustment on the dynamical evolution of energy-saving and emission-reduction system in China," Applied Energy, Elsevier, vol. 196(C), pages 180-189.
    5. Shveta Soam & Pål Börjesson, 2020. "Considerations on Potentials, Greenhouse Gas, and Energy Performance of Biofuels Based on Forest Residues for Heavy-Duty Road Transport in Sweden," Energies, MDPI, vol. 13(24), pages 1-21, December.
    6. Darmawan, Arif & Fitrianto, Anggoro Cahyo & Aziz, Muhammad & Tokimatsu, Koji, 2018. "Integrated system of rice production and electricity generation," Applied Energy, Elsevier, vol. 220(C), pages 672-680.
    7. Tianyi Yin & Taoli Huhe & Xueqin Li & Qian Wang & Tingzhou Lei & Zhengzhong Zhou, 2024. "Research on Life Cycle Assessment and Performance Comparison of Bioethanol Production from Various Biomass Feedstocks," Sustainability, MDPI, vol. 16(5), pages 1-16, February.
    8. Anand, Abhijeet & Kumar, Vivek & Kaushal, Priyanka, 2022. "Biochar and its twin benefits: Crop residue management and climate change mitigation in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    9. Zhang, Jiaqi & Li, Yu'e & Cai, Andong & Oosterveer, Peter & Greene, Mary & Wang, Bin, 2023. "Greenhouse gas reduction through crop residue-based bioenergy: A meta-analysis of reduction efficiency and abatement costs of various products," Energy, Elsevier, vol. 270(C).
    10. Trivedi, Abhinav & Verma, Amit Ranjan & Kaur, Supreet & Jha, Bhaskar & Vijay, Vandit & Chandra, Ram & Vijay, Virendra Kumar & Subbarao, P.M.V. & Tiwari, Ratnesh & Hariprasad, P. & Prasad, Rajendra, 2017. "Sustainable bio-energy production models for eradicating open field burning of paddy straw in Punjab, India," Energy, Elsevier, vol. 127(C), pages 310-317.
    11. Borujeni, Nasim Espah & Karimi, Keikhosro & Denayer, Joeri F.M. & Kumar, Rajeev, 2022. "Apple pomace biorefinery for ethanol, mycoprotein, and value-added biochemicals production by Mucor indicus," Energy, Elsevier, vol. 240(C).
    12. Ben Daya, Bechir & Nourelfath, Mustapha, 2019. "Sustainability assessment of integrated forest biorefinery implemented in Canadian pulp and paper mills," International Journal of Production Economics, Elsevier, vol. 214(C), pages 248-265.
    13. Rogério Marques & Fábio Matos Fernandes & Marcelo Santana Silva & Luís Oscar Martins & Francisco Gaudêncio Mendonça Freires, 2023. "Analysis of Competitiveness Factors of Wind Power: A Case study in the Alto Sertão Wind Complex in the State of Bahia, Brazil," International Journal of Energy Economics and Policy, Econjournals, vol. 13(6), pages 153-169, November.
    14. Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Kalogirou, Soteris A. & Gupta, Vijai Kumar & Park, Young-Kwon & Fallahi, Alireza & Sulaiman, Alawi & Ranjbari, Meisam & Rahnama, Hassan & Aghbashl, 2022. "Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    15. Zhao, Yan & Damgaard, Anders & Xu, Yingjie & Liu, Shan & Christensen, Thomas H., 2019. "Bioethanol from corn stover – Global warming footprint of alternative biotechnologies," Applied Energy, Elsevier, vol. 247(C), pages 237-253.
    16. Fang, Yan Ru & Wu, Yi & Xie, Guang Hui, 2019. "Crop residue utilizations and potential for bioethanol production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    17. Mostafa Rezaei & Ali Mostafaeipour & Mojtaba Qolipour & Hamid-Reza Arabnia, 2018. "Hydrogen production using wind energy from sea water: A case study on Southern and Northern coasts of Iran," Energy & Environment, , vol. 29(3), pages 333-357, May.
    18. Maurizio Bressan & Elena Campagnoli & Carlo Giovanni Ferro & Valter Giaretto, 2022. "Rice Straw: A Waste with a Remarkable Green Energy Potential," Energies, MDPI, vol. 15(4), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Shengdong & Luo, Fang & Huang, Wenjing & Huang, Wangxiang & Wu, Yuanxin, 2017. "Comparison of three fermentation strategies for alleviating the negative effect of the ionic liquid 1-ethyl-3-methylimidazolium acetate on lignocellulosic ethanol production," Applied Energy, Elsevier, vol. 197(C), pages 124-131.
    2. Daraei, Mahsa & Avelin, Anders & Dotzauer, Erik & Thorin, Eva, 2019. "Evaluation of biofuel production integrated with existing CHP plants and the impacts on production planning of the system – A case study," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    3. Wiraditma Prananta & Ida Kubiszewski, 2021. "Assessment of Indonesia’s Future Renewable Energy Plan: A Meta-Analysis of Biofuel Energy Return on Investment (EROI)," Energies, MDPI, vol. 14(10), pages 1-15, May.
    4. Daylan, B. & Ciliz, N., 2016. "Life cycle assessment and environmental life cycle costing analysis of lignocellulosic bioethanol as an alternative transportation fuel," Renewable Energy, Elsevier, vol. 89(C), pages 578-587.
    5. Ranjan, Amrita & Khanna, Swati & Moholkar, V.S., 2013. "Feasibility of rice straw as alternate substrate for biobutanol production," Applied Energy, Elsevier, vol. 103(C), pages 32-38.
    6. Buchspies, Benedikt & Kaltschmitt, Martin, 2018. "A consequential assessment of changes in greenhouse gas emissions due to the introduction of wheat straw ethanol in the context of European legislation," Applied Energy, Elsevier, vol. 211(C), pages 368-381.
    7. Shafie, S.M. & Masjuki, H.H. & Mahlia, T.M.I., 2014. "Life cycle assessment of rice straw-based power generation in Malaysia," Energy, Elsevier, vol. 70(C), pages 401-410.
    8. Iris Kral & Gerhard Piringer & Molly K. Saylor & Javier Lizasoain & Andreas Gronauer & Alexander Bauer, 2020. "Life Cycle Assessment of Biogas Production from Unused Grassland Biomass Pretreated by Steam Explosion Using a System Expansion Method," Sustainability, MDPI, vol. 12(23), pages 1-17, November.
    9. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Yang Yang & Ji-Qin Ni & Weiqing Bao & Lei Zhao & Guang Hui Xie, 2019. "Potential Reductions in Greenhouse Gas and Fine Particulate Matter Emissions Using Corn Stover for Ethanol Production in China," Energies, MDPI, vol. 12(19), pages 1-14, September.
    11. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    13. Kat, Bora, 2023. "Clean energy transition in the Turkish power sector: A techno-economic analysis with a high-resolution power expansion model," Utilities Policy, Elsevier, vol. 82(C).
    14. Bogdanov, Dmitrii & Toktarova, Alla & Breyer, Christian, 2019. "Transition towards 100% renewable power and heat supply for energy intensive economies and severe continental climate conditions: Case for Kazakhstan," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Taghizadeh-Alisaraei, Ahmad & Motevali, Ali & Ghobadian, Barat, 2019. "Ethanol production from date wastes: Adapted technologies, challenges, and global potential," Renewable Energy, Elsevier, vol. 143(C), pages 1094-1110.
    16. Nikodinoska, Natasha & Paletto, Alessandro & Pastorella, Fabio & Granvik, Madeleine & Franzese, Pier Paolo, 2018. "Assessing, valuing and mapping ecosystem services at city level: The case of Uppsala (Sweden)," Ecological Modelling, Elsevier, vol. 368(C), pages 411-424.
    17. Wang, Ping & Liu, Chaoqi & Chang, Juan & Yin, Qingqiang & Huang, Weiwei & Liu, Yang & Dang, Xiaowei & Gao, Tianzeng & Lu, Fushan, 2019. "Effect of physicochemical pretreatments plus enzymatic hydrolysis on the composition and morphologic structure of corn straw," Renewable Energy, Elsevier, vol. 138(C), pages 502-508.
    18. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    19. Tahereh Soleymani Angili & Katarzyna Grzesik & Anne Rödl & Martin Kaltschmitt, 2021. "Life Cycle Assessment of Bioethanol Production: A Review of Feedstock, Technology and Methodology," Energies, MDPI, vol. 14(10), pages 1-18, May.
    20. Raza, Muhammad Amir & Khatri, Krishan Lal & Hussain, Arslan, 2022. "Transition from fossilized to defossilized energy system in Pakistan," Renewable Energy, Elsevier, vol. 190(C), pages 19-29.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:184:y:2016:i:c:p:353-364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.