IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v178y2016icp346-352.html
   My bibliography  Save this article

The effect of sodium chloride on the pyrolysis of rice husk

Author

Listed:
  • Zhao, Na
  • Li, Bao-Xia

Abstract

Pyrolysis of rice husk with or without catalyst was investigated in a fixed bed reactor to determine the effect of sodium chloride (NaCl) catalyst on the yields of three products, the properties of the bio-oils and the gas composition. At the optimum pyrolysis conditions, the bio-oil yield obtained in non-catalytic pyrolysis process was 53.81wt.%, while that of catalytic pyrolysis maximumly increased to 57.61wt.% with 3wt.% NaCl catalyst. The composition of bio-oils was analyzed by gas chromatography/mass spectrometry (GC/MS) and the results indicated that the catalyst would pierce through the rice husk textures to act on cellulose, hemicellulose and lignin and change the pyrolysis reaction pathways, which decreased the percentage of organic acids, esters, ketones, guaiacols and aldehydes, but increased the percentage of alcohols, phenols, furans and anhydrosugars, along with getting more small molecular compounds. Quality of the bio-oils from catalytic pyrolysis was improved, which carried higher heating value and lower acid value. The maximum heating value and the minimum acid value of bio-oils were 27.09MJ/kg and 68.33 mgKOHg−1, obtained with 3wt.% and 4wt.% NaCl catalyst, respectively, which were 5.12% higher and 14.83% lower than that of non-catalytic pyrolysis. The gas chromatography (GC) analysis of non-condensable gas showed that CO content decreased and CO2 and H2 increased with NaCl catalyst addition, obviously.

Suggested Citation

  • Zhao, Na & Li, Bao-Xia, 2016. "The effect of sodium chloride on the pyrolysis of rice husk," Applied Energy, Elsevier, vol. 178(C), pages 346-352.
  • Handle: RePEc:eee:appene:v:178:y:2016:i:c:p:346-352
    DOI: 10.1016/j.apenergy.2016.06.082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916308571
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.06.082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Kaige & Zhang, Jing & Shanks, Brent H. & Brown, Robert C., 2015. "The deleterious effect of inorganic salts on hydrocarbon yields from catalytic pyrolysis of lignocellulosic biomass and its mitigation," Applied Energy, Elsevier, vol. 148(C), pages 115-120.
    2. Goyal, H.B. & Seal, Diptendu & Saxena, R.C., 2008. "Bio-fuels from thermochemical conversion of renewable resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 504-517, February.
    3. Guo, Da-liang & Wu, Shu-bin & Liu, Bei & Yin, Xiu-li & Yang, Qing, 2012. "Catalytic effects of NaOH and Na2CO3 additives on alkali lignin pyrolysis and gasification," Applied Energy, Elsevier, vol. 95(C), pages 22-30.
    4. Xu, Ying & Wang, Tiejun & Ma, Longlong & Zhang, Qi & Liang, Wei, 2010. "Upgrading of the liquid fuel from fast pyrolysis of biomass over MoNi/[gamma]-Al2O3 catalysts," Applied Energy, Elsevier, vol. 87(9), pages 2886-2891, September.
    5. Williams, Paul T & Nugranad, Nittaya, 2000. "Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks," Energy, Elsevier, vol. 25(6), pages 493-513.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Zihan & Li, Pan & Chang, Chun & Wang, Xianhua & Song, Jiande & Fang, Shuqi & Pang, Shusheng, 2022. "Influence of metal chloride modified biochar on products characteristics from biomass catalytic pyrolysis," Energy, Elsevier, vol. 250(C).
    2. Darmawan, Arif & Fitrianto, Anggoro Cahyo & Aziz, Muhammad & Tokimatsu, Koji, 2018. "Integrated system of rice production and electricity generation," Applied Energy, Elsevier, vol. 220(C), pages 672-680.
    3. Kuo, Hsiu-Po & Hou, Bo-Ren & Huang, An-Ni, 2017. "The influences of the gas fluidization velocity on the properties of bio-oils from fluidized bed pyrolyzer with in-line distillation," Applied Energy, Elsevier, vol. 194(C), pages 279-286.
    4. Ma, Wenchao & Liu, Bin & Zhang, Ruixue & Gu, Tianbao & Ji, Xiang & Zhong, Lei & Chen, Guanyi & Ma, Longlong & Cheng, Zhanjun & Li, Xiangping, 2018. "Co-upgrading of raw bio-oil with kitchen waste oil through fluid catalytic cracking (FCC)," Applied Energy, Elsevier, vol. 217(C), pages 233-240.
    5. Jung, Sungyup & Lee, Jechan & Moon, Deok Hyun & Kim, Ki-Hyun & Kwon, Eilhann E., 2021. "Upgrading biogas into syngas through dry reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiang, Kung-Yuh & Chien, Kuang-Li & Lu, Cheng-Han, 2012. "Characterization and comparison of biomass produced from various sources: Suggestions for selection of pretreatment technologies in biomass-to-energy," Applied Energy, Elsevier, vol. 100(C), pages 164-171.
    2. Douvartzides, Savvas & Charisiou, Nikolaos D. & Wang, Wen & Papadakis, Vagelis G. & Polychronopoulou, Kyriaki & Goula, Maria A., 2022. "Catalytic fast pyrolysis of agricultural residues and dedicated energy crops for the production of high energy density transportation biofuels. Part I: Chemical pathways and bio-oil upgrading," Renewable Energy, Elsevier, vol. 185(C), pages 483-505.
    3. Long, Jinxing & Shu, Riyang & Yuan, Zhengqiu & Wang, Tiejun & Xu, Ying & Zhang, Xinghua & Zhang, Qi & Ma, Longlong, 2015. "Efficient valorization of lignin depolymerization products in the present of NixMg1−xO," Applied Energy, Elsevier, vol. 157(C), pages 540-545.
    4. Hossain, A.K. & Davies, P.A., 2013. "Pyrolysis liquids and gases as alternative fuels in internal combustion engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 165-189.
    5. Gollakota, Anjani R.K. & Reddy, Madhurima & Subramanyam, Malladi D. & Kishore, Nanda, 2016. "A review on the upgradation techniques of pyrolysis oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1543-1568.
    6. Tripathi, Manoj & Sahu, J.N. & Ganesan, P., 2016. "Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 467-481.
    7. Ong, Hwai Chyuan & Chen, Wei-Hsin & Farooq, Abid & Gan, Yong Yang & Lee, Keat Teong & Ashokkumar, Veeramuthu, 2019. "Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    8. Byun, Jaewon & Han, Jeehoon, 2016. "Process synthesis and analysis for catalytic conversion of lignocellulosic biomass to fuels: Separate conversion of cellulose and hemicellulose using 2-sec-butylphenol (SBP) solvent," Applied Energy, Elsevier, vol. 171(C), pages 483-490.
    9. Aboagye, D. & Banadda, N. & Kiggundu, N. & Kabenge, I., 2017. "Assessment of orange peel waste availability in ghana and potential bio-oil yield using fast pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 814-821.
    10. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    11. Qi, Jianhui & Zhao, Jianli & Xu, Yang & Wang, Yongjia & Han, Kuihua, 2018. "Segmented heating carbonization of biomass: Yields, property and estimation of heating value of chars," Energy, Elsevier, vol. 144(C), pages 301-311.
    12. Fernanda Pereira Martins & Fabio Avila Rodrigues & Marcio Jose Silva, 2018. "Fe 2 (SO 4 ) 3 -Catalyzed Levulinic Acid Esterification: Production of Fuel Bioadditives," Energies, MDPI, vol. 11(5), pages 1-11, May.
    13. Dębowski, Marcin & Zieliński, Marcin & Grala, Anna & Dudek, Magda, 2013. "Algae biomass as an alternative substrate in biogas production technologies—Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 596-604.
    14. Xiaobo Wang & Anqi Liu & Zengli Zhao & Haibin Li, 2020. "Experimental and Model Study on Raw Biomass Gasification Syngas Conditioning in a Molten NaOH-Na 2 CO 3 Mixture," Energies, MDPI, vol. 13(14), pages 1-16, July.
    15. Kumar N, Sasi & Grekov, Denys & Pré, Pascaline & Alappat, Babu J., 2020. "Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    16. Zang, Guiyan & Zhang, Jianan & Jia, Junxi & Lora, Electo Silva & Ratner, Albert, 2020. "Life cycle assessment of power-generation systems based on biomass integrated gasification combined cycles," Renewable Energy, Elsevier, vol. 149(C), pages 336-346.
    17. Ioannidou, O. & Zabaniotou, A. & Antonakou, E.V. & Papazisi, K.M. & Lappas, A.A. & Athanassiou, C., 2009. "Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and catalytic pyrolysis in two reactor configurations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 750-762, May.
    18. Sahoo, Abhisek & Kumar, Sachin & Mohanty, Kaustubha, 2021. "Kinetic and thermodynamic analysis of Putranjiva roxburghii (putranjiva) and Cassia fistula (amaltas) non-edible oilseeds using thermogravimetric analyzer," Renewable Energy, Elsevier, vol. 165(P1), pages 261-277.
    19. Marathe, P.S. & Westerhof, R.J.M. & Kersten, S.R.A., 2019. "Fast pyrolysis of lignins with different molecular weight: Experiments and modelling," Applied Energy, Elsevier, vol. 236(C), pages 1125-1137.
    20. Ghulam Mujtaba & Rifat Hayat & Qaiser Hussain & Mukhtar Ahmed, 2021. "Physio-Chemical Characterization of Biochar, Compost and Co-Composted Biochar Derived from Green Waste," Sustainability, MDPI, vol. 13(9), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:178:y:2016:i:c:p:346-352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.