IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v140y2015icp329-337.html
   My bibliography  Save this article

Effect of phase change materials on indoor thermal environment under different weather conditions and over a long time

Author

Listed:
  • Ling, Haoshu
  • Chen, Chao
  • Wei, Shen
  • Guan, Yong
  • Ma, Caiwen
  • Xie, Guangya
  • Li, Na
  • Chen, Ziguang

Abstract

To evaluate the effect of phase change materials (PCMs) on the indoor thermal environment of greenhouses under different weather conditions and over a long time in the heating season, a study was carried out using both experimental method and numerical method. The study was conducted in a typical greenhouse located in Beijing, China, and important parameters have been monitored continuously for 61days, including indoor air temperature, outdoor air temperature, solar radiation, surface temperature of greenhouse envelopes and soil temperature. Based on these parameters, a number of indicators, namely, operative temperature, daily effective accumulative temperature, irradiated surface temperature of the north wall, average temperature of PCMs, and daily heat storage and release, have been used to evaluate the performance of PCMs in greenhouses. All indicators have provided consistent results that confirm the positive effect of PCMs on improving the indoor thermal environment of greenhouses over a long time. Additionally, the paper has demonstrated that a sunny weather could help to promote the efficiency of PCMs, comparing to a cloudy weather.

Suggested Citation

  • Ling, Haoshu & Chen, Chao & Wei, Shen & Guan, Yong & Ma, Caiwen & Xie, Guangya & Li, Na & Chen, Ziguang, 2015. "Effect of phase change materials on indoor thermal environment under different weather conditions and over a long time," Applied Energy, Elsevier, vol. 140(C), pages 329-337.
  • Handle: RePEc:eee:appene:v:140:y:2015:i:c:p:329-337
    DOI: 10.1016/j.apenergy.2014.11.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914012471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.11.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ascione, Fabrizio & Bianco, Nicola & De Masi, Rosa Francesca & de’ Rossi, Filippo & Vanoli, Giuseppe Peter, 2014. "Energy refurbishment of existing buildings through the use of phase change materials: Energy savings and indoor comfort in the cooling season," Applied Energy, Elsevier, vol. 113(C), pages 990-1007.
    2. Oró, E. & de Gracia, A. & Castell, A. & Farid, M.M. & Cabeza, L.F., 2012. "Review on phase change materials (PCMs) for cold thermal energy storage applications," Applied Energy, Elsevier, vol. 99(C), pages 513-533.
    3. Cheng, Rui & Pomianowski, Michal & Wang, Xin & Heiselberg, Per & Zhang, Yinping, 2013. "A new method to determine thermophysical properties of PCM-concrete brick," Applied Energy, Elsevier, vol. 112(C), pages 988-998.
    4. Jin, Xing & Medina, Mario A. & Zhang, Xiaosong, 2013. "On the importance of the location of PCMs in building walls for enhanced thermal performance," Applied Energy, Elsevier, vol. 106(C), pages 72-78.
    5. Behzadi, S. & Farid, M.M., 2014. "Long term thermal stability of organic PCMs," Applied Energy, Elsevier, vol. 122(C), pages 11-16.
    6. Zhou, D. & Shire, G.S.F. & Tian, Y., 2014. "Parametric analysis of influencing factors in Phase Change Material Wallboard (PCMW)," Applied Energy, Elsevier, vol. 119(C), pages 33-42.
    7. Xu, Biwan & Li, Zongjin, 2014. "Performance of novel thermal energy storage engineered cementitious composites incorporating a paraffin/diatomite composite phase change material," Applied Energy, Elsevier, vol. 121(C), pages 114-122.
    8. Stazi, Francesca & Tomassoni, Elisa & Bonfigli, Cecilia & Di Perna, Costanzo, 2014. "Energy, comfort and environmental assessment of different building envelope techniques in a Mediterranean climate with a hot dry summer," Applied Energy, Elsevier, vol. 134(C), pages 176-196.
    9. Lazaro, Ana & Peñalosa, Conchita & Solé, Aran & Diarce, Gonzalo & Haussmann, Thomas & Fois, Magali & Zalba, Belén & Gshwander, Stefan & Cabeza, Luisa F., 2013. "Intercomparative tests on phase change materials characterisation with differential scanning calorimeter," Applied Energy, Elsevier, vol. 109(C), pages 415-420.
    10. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    11. Darkwa, Jo, 2009. "Mathematical evaluation of a buried phase change concrete cooling system for buildings," Applied Energy, Elsevier, vol. 86(5), pages 706-711, May.
    12. Ye, Hong & Long, Linshuang & Zhang, Haitao & Zou, Ruqiang, 2014. "The performance evaluation of shape-stabilized phase change materials in building applications using energy saving index," Applied Energy, Elsevier, vol. 113(C), pages 1118-1126.
    13. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    14. Kuznik, Frédéric & Virgone, Joseph, 2009. "Experimental assessment of a phase change material for wall building use," Applied Energy, Elsevier, vol. 86(10), pages 2038-2046, October.
    15. Xiao, Wei & Wang, Xin & Zhang, Yinping, 2009. "Analytical optimization of interior PCM for energy storage in a lightweight passive solar room," Applied Energy, Elsevier, vol. 86(10), pages 2013-2018, October.
    16. Miranda Fuentes, Johann & Johannes, Kévyn & Kuznik, Frédéric & Cosnier, Matthieu & Virgone, Joseph, 2013. "Melting with convection and radiation in a participating phase change material," Applied Energy, Elsevier, vol. 109(C), pages 454-461.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Bo & Shi, Bijiao & Yao, Zhenzhu & Kumar Shukla, Manoj & Du, Taisheng, 2020. "Energy partitioning and microclimate of solar greenhouse under drip and furrow irrigation systems," Agricultural Water Management, Elsevier, vol. 234(C).
    2. Liu, Xingan & Wu, Xiaoyang & Xia, Tianyang & Fan, Zilong & Shi, Wenbin & Li, Yiming & Li, Tianlai, 2022. "New insights of designing thermal insulation and heat storage of Chinese solar greenhouse in high latitudes and cold regions," Energy, Elsevier, vol. 242(C).
    3. Sun, Weituo & Wei, Xiaoming & Zhou, Baochang & Lu, Chungui & Guo, Wenzhong, 2022. "Greenhouse heating by energy transfer between greenhouses: System design and implementation," Applied Energy, Elsevier, vol. 325(C).
    4. Wang, Tianyue & Wu, Gaoxiang & Chen, Jiewei & Cui, Peng & Chen, Zexi & Yan, Yangyang & Zhang, Yan & Li, Meicheng & Niu, Dongxiao & Li, Baoguo & Chen, Hongyi, 2017. "Integration of solar technology to modern greenhouse in China: Current status, challenges and prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1178-1188.
    5. Zeyad Amin Al-Absi & Mohd Isa Mohd Hafizal & Mazran Ismail & Azhar Ghazali, 2021. "Towards Sustainable Development: Building’s Retrofitting with PCMs to Enhance the Indoor Thermal Comfort in Tropical Climate, Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    6. Guan, Yong & Wang, Tuo & Tang, Rui & Hu, Wanling & Guo, Jianxuan & Yang, Huijun & Zhang, Yun & Duan, Shijian, 2020. "Numerical study on the heat release capacity of the active-passive phase change wall affected by ventilation velocity," Renewable Energy, Elsevier, vol. 150(C), pages 1047-1056.
    7. Xu, Weiwei & Guo, Huiqing & Ma, Chengwei, 2022. "An active solar water wall for passive solar greenhouse heating," Applied Energy, Elsevier, vol. 308(C).
    8. Yu, Nan & Chen, Chao & Mahkamov, Khamid & Han, Fengtao & Zhao, Chen & Lin, Jie & Jiang, Lixing & Li, Yaru, 2020. "Selection of a phase change material and its thickness for application in walls of buildings for solar-assisted steam curing of precast concrete," Renewable Energy, Elsevier, vol. 150(C), pages 808-820.
    9. Zhu, Na & Li, Xingkun & Hu, Pingfang & Lei, Fei & Wei, Shen & Wang, Wentao, 2022. "An exploration on the performance of using phase change humidity control material wallboards in office buildings," Energy, Elsevier, vol. 239(PE).
    10. Mi, Xuming & Liu, Ran & Cui, Hongzhi & Memon, Shazim Ali & Xing, Feng & Lo, Yiu, 2016. "Energy and economic analysis of building integrated with PCM in different cities of China," Applied Energy, Elsevier, vol. 175(C), pages 324-336.
    11. Guan, Yong & Meng, Qi & Ji, Tianxu & Hu, Wanling & Li, Wenlong & Liu, Tianming, 2023. "Experimental study of the thermal characteristics of a heat storage wall with micro-heat pipe array (MHPA) and PCM in solar greenhouse," Energy, Elsevier, vol. 264(C).
    12. Chen, Chao & Ling, Haoshu & Zhai, Zhiqiang (John) & Li, Yin & Yang, Fengguang & Han, Fengtao & Wei, Shen, 2018. "Thermal performance of an active-passive ventilation wall with phase change material in solar greenhouses," Applied Energy, Elsevier, vol. 216(C), pages 602-612.
    13. Yano, Akira & Cossu, Marco, 2019. "Energy sustainable greenhouse crop cultivation using photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 116-137.
    14. Marine Auzeby & Shen Wei & Chris Underwood & Jess Tindall & Chao Chen & Haoshu Ling & Richard Buswell, 2016. "Effectiveness of Using Phase Change Materials on Reducing Summer Overheating Issues in UK Residential Buildings with Identification of Influential Factors," Energies, MDPI, vol. 9(8), pages 1-16, August.
    15. Xingan Liu & He Li & Yiming Li & Xiang Yue & Subo Tian & Tianlai Li, 2020. "Effect of internal surface structure of the north wall on Chinese solar greenhouse thermal microclimate based on computational fluid dynamics," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-20, April.
    16. Xue Mi & Chao Chen & Haoqi Fu & Gongcheng Li & Yongxiang Jiao & Fengtao Han, 2023. "Experimental Study on Heat Storage/Release Performances of Composite Phase Change Thermal Storage Heating Wallboards Based on Photovoltaic Electric-Thermal Systems," Energies, MDPI, vol. 16(6), pages 1-17, March.
    17. Ling, Haoshu & Wang, Liang & Chen, Chao & Chen, Haisheng, 2019. "Numerical investigations of optimal phase change material incorporated into ventilated walls," Energy, Elsevier, vol. 172(C), pages 1187-1197.
    18. Ye, Hong & Wang, Zijun & Wang, Liwei, 2017. "Effects of PCM on power consumption and temperature control performance of a thermal control system subject to periodic ambient conditions," Applied Energy, Elsevier, vol. 190(C), pages 213-221.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Long, Linshuang & Ye, Hong & Gao, Yanfeng & Zou, Ruqiang, 2014. "Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings," Applied Energy, Elsevier, vol. 136(C), pages 89-97.
    2. Mi, Xuming & Liu, Ran & Cui, Hongzhi & Memon, Shazim Ali & Xing, Feng & Lo, Yiu, 2016. "Energy and economic analysis of building integrated with PCM in different cities of China," Applied Energy, Elsevier, vol. 175(C), pages 324-336.
    3. Mavrigiannaki, A. & Ampatzi, E., 2016. "Latent heat storage in building elements: A systematic review on properties and contextual performance factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 852-866.
    4. Sarı, Ahmet & Alkan, Cemil & Bilgin, Cahit, 2014. "Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties," Applied Energy, Elsevier, vol. 136(C), pages 217-227.
    5. Kong, Xiangfei & Jie, Pengfei & Yao, Chengqiang & Liu, Yun, 2017. "Experimental study on thermal performance of phase change material passive and active combined using for building application in winter," Applied Energy, Elsevier, vol. 206(C), pages 293-302.
    6. Akeiber, Hussein & Nejat, Payam & Majid, Muhd Zaimi Abd. & Wahid, Mazlan A. & Jomehzadeh, Fatemeh & Zeynali Famileh, Iman & Calautit, John Kaiser & Hughes, Ben Richard & Zaki, Sheikh Ahmad, 2016. "A review on phase change material (PCM) for sustainable passive cooling in building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1470-1497.
    7. Soares, N. & Santos, P. & Gervásio, H. & Costa, J.J. & Simões da Silva, L., 2017. "Energy efficiency and thermal performance of lightweight steel-framed (LSF) construction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 194-209.
    8. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M., 2015. "Application of PCM energy storage in combination with night ventilation for space cooling," Applied Energy, Elsevier, vol. 158(C), pages 412-421.
    9. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M., 2015. "Application of PCM underfloor heating in combination with PCM wallboards for space heating using price based control system," Applied Energy, Elsevier, vol. 148(C), pages 39-48.
    10. Ramakrishnan, Sayanthan & Wang, Xiaoming & Sanjayan, Jay & Wilson, John, 2017. "Thermal performance assessment of phase change material integrated cementitious composites in buildings: Experimental and numerical approach," Applied Energy, Elsevier, vol. 207(C), pages 654-664.
    11. Long, Linshuang & Ye, Hong & Liu, Minghou, 2016. "A new insight into opaque envelopes in a passive solar house: Properties and roles," Applied Energy, Elsevier, vol. 183(C), pages 685-699.
    12. Kahwaji, Samer & Johnson, Michel B. & Kheirabadi, Ali C. & Groulx, Dominic & White, Mary Anne, 2016. "Stable, low-cost phase change material for building applications: The eutectic mixture of decanoic acid and tetradecanoic acid," Applied Energy, Elsevier, vol. 168(C), pages 457-464.
    13. Domenico Mazzeo & Giuseppe Oliveti & Natale Arcuri, 2017. "A Method for Thermal Dimensioning and for Energy Behavior Evaluation of a Building Envelope PCM Layer by Using the Characteristic Days," Energies, MDPI, vol. 10(5), pages 1-19, May.
    14. Lamrani, B. & Johannes, K. & Kuznik, F., 2021. "Phase change materials integrated into building walls: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    15. Borderon, Julien & Virgone, Joseph & Cantin, Richard, 2015. "Modeling and simulation of a phase change material system for improving summer comfort in domestic residence," Applied Energy, Elsevier, vol. 140(C), pages 288-296.
    16. Saafi, Khawla & Daouas, Naouel, 2019. "Energy and cost efficiency of phase change materials integrated in building envelopes under Tunisia Mediterranean climate," Energy, Elsevier, vol. 187(C).
    17. Sun, Xiaoqin & Zhang, Quan & Medina, Mario A. & Liao, Shuguang, 2015. "Performance of a free-air cooling system for telecommunications base stations using phase change materials (PCMs): In-situ tests," Applied Energy, Elsevier, vol. 147(C), pages 325-334.
    18. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    19. Abednego Oscar Tanuwijava & Ching Jenq Ho & Chi-Ming Lai & Chao-Yang Huang, 2013. "Numerical Investigation of the Thermal Management Performance of MEPCM Modules for PV Applications," Energies, MDPI, vol. 6(8), pages 1-15, August.
    20. Joulin, Annabelle & Younsi, Zohir & Zalewski, Laurent & Lassue, Stéphane & Rousse, Daniel R. & Cavrot, Jean-Paul, 2011. "Experimental and numerical investigation of a phase change material: Thermal-energy storage and release," Applied Energy, Elsevier, vol. 88(7), pages 2454-2462, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:140:y:2015:i:c:p:329-337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.