IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v136y2014icp89-97.html
   My bibliography  Save this article

Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings

Author

Listed:
  • Long, Linshuang
  • Ye, Hong
  • Gao, Yanfeng
  • Zou, Ruqiang

Abstract

One of the key methods to improve the energy saving performance of a building is to apply advanced materials or components to the building envelope. However, the two parts of a building’s envelope, the transparent one and the non-transparent one, are usually investigated individually by existing literature. In this study, vanadium dioxide (VO2) glazing, an advanced energy-efficient element applied to the transparent parts of the building envelope, and phase change material (PCM), a typical thermal storage material used to improve the non-transparent parts of the building envelope, were adopted simultaneously for the first time. The synergetic performance of VO2 glazing and PCM, demonstrated in a full-scale, lightweight, passive room, resulted in a significant improvement in the thermal comfort degree. The Energy Saving Index (ESI) is a simple and effective indicator that can be used to evaluate the passive application performance of a single energy-efficient material or component on a common standpoint. In this work, the index was broadened to evaluate the performance of more than one material, showing that ESI is feasible and favorable to analyze the coefficient application of several building materials and/or components. Using the ESI, the performance of the synergetic application was also compared with those of the sole materials, indicating that the synergetic application has a better performance during the cooling period. Furthermore the synergetic application involves an interplay rather than a simple combination of the energy-efficient materials. The application to a heavyweight building is further discussed on the basis of performance simulations, including an economic estimation and application during the heating period.

Suggested Citation

  • Long, Linshuang & Ye, Hong & Gao, Yanfeng & Zou, Ruqiang, 2014. "Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings," Applied Energy, Elsevier, vol. 136(C), pages 89-97.
  • Handle: RePEc:eee:appene:v:136:y:2014:i:c:p:89-97
    DOI: 10.1016/j.apenergy.2014.09.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914009544
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.09.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oró, E. & de Gracia, A. & Castell, A. & Farid, M.M. & Cabeza, L.F., 2012. "Review on phase change materials (PCMs) for cold thermal energy storage applications," Applied Energy, Elsevier, vol. 99(C), pages 513-533.
    2. Jin, Xing & Medina, Mario A. & Zhang, Xiaosong, 2013. "On the importance of the location of PCMs in building walls for enhanced thermal performance," Applied Energy, Elsevier, vol. 106(C), pages 72-78.
    3. Zhou, Guobing & Yang, Yongping & Wang, Xin & Zhou, Shaoxiang, 2009. "Numerical analysis of effect of shape-stabilized phase change material plates in a building combined with night ventilation," Applied Energy, Elsevier, vol. 86(1), pages 52-59, January.
    4. Wang, Lijiu & Meng, Duo, 2010. "Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage," Applied Energy, Elsevier, vol. 87(8), pages 2660-2665, August.
    5. Ye, Hong & Meng, Xianchun & Long, Linshuang & Xu, Bin, 2013. "The route to a perfect window," Renewable Energy, Elsevier, vol. 55(C), pages 448-455.
    6. Eicker, Ursula, 2010. "Cooling strategies, summer comfort and energy performance of a rehabilitated passive standard office building," Applied Energy, Elsevier, vol. 87(6), pages 2031-2039, June.
    7. Pisello, Anna Laura & Goretti, Michele & Cotana, Franco, 2012. "A method for assessing buildings’ energy efficiency by dynamic simulation and experimental activity," Applied Energy, Elsevier, vol. 97(C), pages 419-429.
    8. Leckner, Mitchell & Zmeureanu, Radu, 2011. "Life cycle cost and energy analysis of a Net Zero Energy House with solar combisystem," Applied Energy, Elsevier, vol. 88(1), pages 232-241, January.
    9. Sadineni, Suresh B. & Madala, Srikanth & Boehm, Robert F., 2011. "Passive building energy savings: A review of building envelope components," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3617-3631.
    10. Ye, Hong & Long, Linshuang & Zhang, Haitao & Zou, Ruqiang, 2014. "The performance evaluation of shape-stabilized phase change materials in building applications using energy saving index," Applied Energy, Elsevier, vol. 113(C), pages 1118-1126.
    11. Barreneche, Camila & de Gracia, Alvaro & Serrano, Susana & Elena Navarro, M. & Borreguero, Ana María & Inés Fernández, A. & Carmona, Manuel & Rodriguez, Juan Francisco & Cabeza, Luisa F., 2013. "Comparison of three different devices available in Spain to test thermal properties of building materials including phase change materials," Applied Energy, Elsevier, vol. 109(C), pages 421-427.
    12. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    13. Zhang, Yu & Zhang, Yinping & Wang, Xin & Chen, Qun, 2013. "Ideal thermal conductivity of a passive building wall: Determination method and understanding," Applied Energy, Elsevier, vol. 112(C), pages 967-974.
    14. Kenisarin, Murat M. & Kenisarina, Kamola M., 2012. "Form-stable phase change materials for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1999-2040.
    15. Kuznik, Frédéric & Virgone, Joseph, 2009. "Experimental assessment of a phase change material for wall building use," Applied Energy, Elsevier, vol. 86(10), pages 2038-2046, October.
    16. Baetens, R. & De Coninck, R. & Van Roy, J. & Verbruggen, B. & Driesen, J. & Helsen, L. & Saelens, D., 2012. "Assessing electrical bottlenecks at feeder level for residential net zero-energy buildings by integrated system simulation," Applied Energy, Elsevier, vol. 96(C), pages 74-83.
    17. Xiao, Wei & Wang, Xin & Zhang, Yinping, 2009. "Analytical optimization of interior PCM for energy storage in a lightweight passive solar room," Applied Energy, Elsevier, vol. 86(10), pages 2013-2018, October.
    18. Darkwa, K., 2007. "Quasi-isotropic laminated phase-change material system," Applied Energy, Elsevier, vol. 84(6), pages 599-607, June.
    19. Ye, Hong & Long, Linshuang & Zhang, Haitao & Gao, Yanfeng, 2014. "The energy saving index and the performance evaluation of thermochromic windows in passive buildings," Renewable Energy, Elsevier, vol. 66(C), pages 215-221.
    20. Kamalisarvestani, M. & Saidur, R. & Mekhilef, S. & Javadi, F.S., 2013. "Performance, materials and coating technologies of thermochromic thin films on smart windows," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 353-364.
    21. Ascione, Fabrizio & Bianco, Nicola & De Masi, Rosa Francesca & de’ Rossi, Filippo & Vanoli, Giuseppe Peter, 2014. "Energy refurbishment of existing buildings through the use of phase change materials: Energy savings and indoor comfort in the cooling season," Applied Energy, Elsevier, vol. 113(C), pages 990-1007.
    22. Zhou, Guobing & Yang, Yongping & Wang, Xin & Cheng, Jinming, 2010. "Thermal characteristics of shape-stabilized phase change material wallboard with periodical outside temperature waves," Applied Energy, Elsevier, vol. 87(8), pages 2666-2672, August.
    23. Zhang, Zhengguo & Zhang, Ni & Peng, Jing & Fang, Xiaoming & Gao, Xuenong & Fang, Yutang, 2012. "Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material," Applied Energy, Elsevier, vol. 91(1), pages 426-431.
    24. Biswas, Kaushik & Lu, Jue & Soroushian, Parviz & Shrestha, Som, 2014. "Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard," Applied Energy, Elsevier, vol. 131(C), pages 517-529.
    25. Pacheco, R. & Ordóñez, J. & Martínez, G., 2012. "Energy efficient design of building: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3559-3573.
    26. Chiu, Justin N.W. & Gravoille, Pauline & Martin, Viktoria, 2013. "Active free cooling optimization with thermal energy storage in Stockholm," Applied Energy, Elsevier, vol. 109(C), pages 523-529.
    27. Darkwa, K. & O'Callaghan, P.W. & Tetlow, D., 2006. "Phase-change drywalls in a passive-solar building," Applied Energy, Elsevier, vol. 83(5), pages 425-435, May.
    28. Stephan, André & Crawford, Robert H. & de Myttenaere, Kristel, 2013. "A comprehensive assessment of the life cycle energy demand of passive houses," Applied Energy, Elsevier, vol. 112(C), pages 23-34.
    29. Barreneche, Camila & Navarro, M. Elena & Fernández, A. Inés & Cabeza, Luisa F., 2013. "Improvement of the thermal inertia of building materials incorporating PCM. Evaluation in the macroscale," Applied Energy, Elsevier, vol. 109(C), pages 428-432.
    30. Kaska, Önder & Yumrutas, Recep & Arpa, Orhan, 2009. "Theoretical and experimental investigation of total equivalent temperature difference (TETD) values for building walls and flat roofs in Turkey," Applied Energy, Elsevier, vol. 86(5), pages 737-747, May.
    31. Joulin, Annabelle & Younsi, Zohir & Zalewski, Laurent & Lassue, Stéphane & Rousse, Daniel R. & Cavrot, Jean-Paul, 2011. "Experimental and numerical investigation of a phase change material: Thermal-energy storage and release," Applied Energy, Elsevier, vol. 88(7), pages 2454-2462, July.
    32. Mohamed, Ayman & Hasan, Ala & Sirén, Kai, 2014. "Fulfillment of net-zero energy building (NZEB) with four metrics in a single family house with different heating alternatives," Applied Energy, Elsevier, vol. 114(C), pages 385-399.
    33. Fong, K.F. & Lee, C.K., 2012. "Towards net zero energy design for low-rise residential buildings in subtropical Hong Kong," Applied Energy, Elsevier, vol. 93(C), pages 686-694.
    34. Miranda Fuentes, Johann & Johannes, Kévyn & Kuznik, Frédéric & Cosnier, Matthieu & Virgone, Joseph, 2013. "Melting with convection and radiation in a participating phase change material," Applied Energy, Elsevier, vol. 109(C), pages 454-461.
    35. Fan, Li-Wu & Fang, Xin & Wang, Xiao & Zeng, Yi & Xiao, Yu-Qi & Yu, Zi-Tao & Xu, Xu & Hu, Ya-Cai & Cen, Ke-Fa, 2013. "Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials," Applied Energy, Elsevier, vol. 110(C), pages 163-172.
    36. Kontoleon, K.J. & Eumorfopoulou, E.A., 2008. "The influence of wall orientation and exterior surface solar absorptivity on time lag and decrement factor in the Greek region," Renewable Energy, Elsevier, vol. 33(7), pages 1652-1664.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zuhair Jastaneyah & Haslinda M. Kamar & Abdulrahman Alansari & Hakim Al Garalleh, 2023. "A Comparative Analysis of Standard and Nano-Structured Glass for Enhancing Heat Transfer and Reducing Energy Consumption Using Metal and Oxide Nanoparticles: A Review," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    2. Zhang, He & Xing, Feng & Cui, Hong-Zhi & Chen, Da-Zhu & Ouyang, Xing & Xu, Su-Zhen & Wang, Jia-Xin & Huang, Yi-Tian & Zuo, Jian-Dong & Tang, Jiao-Ning, 2016. "A novel phase-change cement composite for thermal energy storage: Fabrication, thermal and mechanical properties," Applied Energy, Elsevier, vol. 170(C), pages 130-139.
    3. Hossein Arasteh & Wahid Maref & Hamed H. Saber, 2023. "Energy and Thermal Performance Analysis of PCM-Incorporated Glazing Units Combined with Passive and Active Techniques: A Review Study," Energies, MDPI, vol. 16(3), pages 1-42, January.
    4. Merlin, Kevin & Delaunay, Didier & Soto, Jérôme & Traonvouez, Luc, 2016. "Heat transfer enhancement in latent heat thermal storage systems: Comparative study of different solutions and thermal contact investigation between the exchanger and the PCM," Applied Energy, Elsevier, vol. 166(C), pages 107-116.
    5. Cuce, Erdem & Cuce, Pinar Mert & Young, Chin-Huai, 2016. "Energy saving potential of heat insulation solar glass: Key results from laboratory and in-situ testing," Energy, Elsevier, vol. 97(C), pages 369-380.
    6. Xie, Xing & Xu, Bin & Cheng, Yuan-xia & Pei, Gang, 2023. "New method of integrating experiment for maintaining low indoor temperature into numerical modelling: A feasibility demonstration in reduced-scale building model," Energy, Elsevier, vol. 284(C).
    7. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M., 2015. "Application of PCM underfloor heating in combination with PCM wallboards for space heating using price based control system," Applied Energy, Elsevier, vol. 148(C), pages 39-48.
    8. Long, Linshuang & Ye, Hong & Liu, Minghou, 2016. "A new insight into opaque envelopes in a passive solar house: Properties and roles," Applied Energy, Elsevier, vol. 183(C), pages 685-699.
    9. Cuce, Erdem, 2016. "Toward multi-functional PV glazing technologies in low/zero carbon buildings: Heat insulation solar glass – Latest developments and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1286-1301.
    10. Chen, Renjie & Huang, Xinyu & Deng, Weibin & Zheng, Ruizhi & Aftab, Waseem & Shi, Jinmin & Xie, Delong & Zou, Ruqiang & Mei, Yi, 2020. "Facile preparation of flexible eicosane/SWCNTs phase change films via colloid aggregation for thermal energy storage," Applied Energy, Elsevier, vol. 260(C).
    11. Devaux, Paul & Farid, Mohammed Mehdi, 2017. "Benefits of PCM underfloor heating with PCM wallboards for space heating in winter," Applied Energy, Elsevier, vol. 191(C), pages 593-602.
    12. Ye, Hong & Wang, Zijun & Wang, Liwei, 2017. "Effects of PCM on power consumption and temperature control performance of a thermal control system subject to periodic ambient conditions," Applied Energy, Elsevier, vol. 190(C), pages 213-221.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye, Hong & Long, Linshuang & Zhang, Haitao & Zou, Ruqiang, 2014. "The performance evaluation of shape-stabilized phase change materials in building applications using energy saving index," Applied Energy, Elsevier, vol. 113(C), pages 1118-1126.
    2. Mavrigiannaki, A. & Ampatzi, E., 2016. "Latent heat storage in building elements: A systematic review on properties and contextual performance factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 852-866.
    3. Long, Linshuang & Ye, Hong & Liu, Minghou, 2016. "A new insight into opaque envelopes in a passive solar house: Properties and roles," Applied Energy, Elsevier, vol. 183(C), pages 685-699.
    4. Ling, Haoshu & Chen, Chao & Wei, Shen & Guan, Yong & Ma, Caiwen & Xie, Guangya & Li, Na & Chen, Ziguang, 2015. "Effect of phase change materials on indoor thermal environment under different weather conditions and over a long time," Applied Energy, Elsevier, vol. 140(C), pages 329-337.
    5. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M., 2015. "Application of PCM energy storage in combination with night ventilation for space cooling," Applied Energy, Elsevier, vol. 158(C), pages 412-421.
    6. Mi, Xuming & Liu, Ran & Cui, Hongzhi & Memon, Shazim Ali & Xing, Feng & Lo, Yiu, 2016. "Energy and economic analysis of building integrated with PCM in different cities of China," Applied Energy, Elsevier, vol. 175(C), pages 324-336.
    7. Cao, Lei & Su, Di & Tang, Yaojie & Fang, Guiyin & Tang, Fang, 2015. "Properties evaluation and applications of thermal energystorage materials in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 500-522.
    8. Soares, N. & Santos, P. & Gervásio, H. & Costa, J.J. & Simões da Silva, L., 2017. "Energy efficiency and thermal performance of lightweight steel-framed (LSF) construction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 194-209.
    9. Lei, Jiawei & Kumarasamy, Karthikeyan & Zingre, Kishor T. & Yang, Jinglei & Wan, Man Pun & Yang, En-Hua, 2017. "Cool colored coating and phase change materials as complementary cooling strategies for building cooling load reduction in tropics," Applied Energy, Elsevier, vol. 190(C), pages 57-63.
    10. Parameshwaran, R. & Kalaiselvam, S. & Harikrishnan, S. & Elayaperumal, A., 2012. "Sustainable thermal energy storage technologies for buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2394-2433.
    11. Wang, Tao & Mantha, Divakar & Reddy, Ramana G., 2013. "Novel low melting point quaternary eutectic system for solar thermal energy storage," Applied Energy, Elsevier, vol. 102(C), pages 1422-1429.
    12. Cui, Shuang & Ahn, Chihyung & Wingert, Matthew C. & Leung, David & Cai, Shengqiang & Chen, Renkun, 2016. "Bio-inspired effective and regenerable building cooling using tough hydrogels," Applied Energy, Elsevier, vol. 168(C), pages 332-339.
    13. Sarı, Ahmet & Alkan, Cemil & Bilgin, Cahit, 2014. "Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties," Applied Energy, Elsevier, vol. 136(C), pages 217-227.
    14. Qian, Yong & Wei, Ping & Jiang, Pingkai & Li, Zhi & Yan, Yonggang & Liu, Jiping, 2013. "Preparation of a novel PEG composite with halogen-free flame retardant supporting matrix for thermal energy storage application," Applied Energy, Elsevier, vol. 106(C), pages 321-327.
    15. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M., 2015. "Application of PCM underfloor heating in combination with PCM wallboards for space heating using price based control system," Applied Energy, Elsevier, vol. 148(C), pages 39-48.
    16. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Cheng, Wenlong & Xie, Biao & Zhang, Rongming & Xu, Zhiming & Xia, Yuting, 2015. "Effect of thermal conductivities of shape stabilized PCM on under-floor heating system," Applied Energy, Elsevier, vol. 144(C), pages 10-18.
    18. Kong, Xiangfei & Jie, Pengfei & Yao, Chengqiang & Liu, Yun, 2017. "Experimental study on thermal performance of phase change material passive and active combined using for building application in winter," Applied Energy, Elsevier, vol. 206(C), pages 293-302.
    19. Ramakrishnan, Sayanthan & Wang, Xiaoming & Sanjayan, Jay & Wilson, John, 2017. "Thermal performance assessment of phase change material integrated cementitious composites in buildings: Experimental and numerical approach," Applied Energy, Elsevier, vol. 207(C), pages 654-664.
    20. Jin, Xing & Medina, Mario A. & Zhang, Xiaosong, 2013. "On the importance of the location of PCMs in building walls for enhanced thermal performance," Applied Energy, Elsevier, vol. 106(C), pages 72-78.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:136:y:2014:i:c:p:89-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.