IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v104y2013icp87-104.html
   My bibliography  Save this article

Achieving better energy-efficient air conditioning – A review of technologies and strategies

Author

Listed:
  • Chua, K.J.
  • Chou, S.K.
  • Yang, W.M.
  • Yan, J.

Abstract

Air conditioning is essential for maintaining thermal comfort in indoor environments, particularly for hot and humid climates. Today, air conditioning, comprising cooling and dehumidification, has become a necessity in commercial and residential buildings and industrial processes. It accounts for a major share of the energy consumption of a building or facility. In tropical climates, the energy consumed by heating, ventilation and air-conditioning (HVAC) can exceed 50% of the total energy consumption of a building. This significant figure is primarily due to the heavy duty placed on cooling technologies to remove both sensible and latent heat loads. Therefore, there is tremendous potential to improve the overall efficiency of the air-conditioning systems in buildings.

Suggested Citation

  • Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
  • Handle: RePEc:eee:appene:v:104:y:2013:i:c:p:87-104
    DOI: 10.1016/j.apenergy.2012.10.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191200743X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.10.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhai, X.Q. & Wang, R.Z., 2009. "A review for absorbtion and adsorbtion solar cooling systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1523-1531, August.
    2. Mendell, M.J. & Fisk, W.J. & Kreiss, K. & Levin, H. & Alexander, D. & Cain, W.S. & Girman, J.R. & Hines, C.J. & Jensen, P.A. & Milton, D.K. & Rexroat, L.P. & Wallingford, K.M., 2002. "Improving the health of workers in indoor environments: Priority research needs for a National Occupational Research Agenda," American Journal of Public Health, American Public Health Association, vol. 92(9), pages 1430-1440.
    3. Isaac, Morna & van Vuuren, Detlef P., 2009. "Modeling global residential sector energy demand for heating and air conditioning in the context of climate change," Energy Policy, Elsevier, vol. 37(2), pages 507-521, February.
    4. Venegas, M. & Rodríguez-Hidalgo, M.C. & Salgado, R. & Lecuona, A. & Rodríguez, P. & Gutiérrez, G., 2011. "Experimental diagnosis of the influence of operational variables on the performance of a solar absorption cooling system," Applied Energy, Elsevier, vol. 88(4), pages 1447-1454, April.
    5. Donald H. Rosenthal & Howard K. Gruenspecht & Emily A. Moran, 1995. "Effects of Global Warming on Energy Use for Space Heating and Cooling in the United States," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 77-96.
    6. Fong, K.F. & Lee, C.K. & Chow, T.T., 2012. "Comparative study of solar cooling systems with building-integrated solar collectors for use in sub-tropical regions like Hong Kong," Applied Energy, Elsevier, vol. 90(1), pages 189-195.
    7. Bergero, Stefano & Chiari, Anna, 2011. "On the performances of a hybrid air-conditioning system in different climatic conditions," Energy, Elsevier, vol. 36(8), pages 5261-5273.
    8. Chow, T. T. & Chan, Apple L. S. & Song, C. L., 2004. "Building-mix optimization in district cooling system implementation," Applied Energy, Elsevier, vol. 77(1), pages 1-13, January.
    9. Xiong, Z.Q. & Dai, Y.J. & Wang, R.Z., 2010. "Development of a novel two-stage liquid desiccant dehumidification system assisted by CaCl2 solution using exergy analysis method," Applied Energy, Elsevier, vol. 87(5), pages 1495-1504, May.
    10. Zhai, X.Q. & Wang, R.Z., 2010. "Experimental investigation and performance analysis on a solar adsorption cooling system with/without heat storage," Applied Energy, Elsevier, vol. 87(3), pages 824-835, March.
    11. Zhai, X.Q. & Qu, M. & Li, Yue. & Wang, R.Z., 2011. "A review for research and new design options of solar absorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4416-4423.
    12. Chow, T. T. & Au, W. H. & Yau, Raymond & Cheng, Vincent & Chan, Apple & Fong, K. F., 2004. "Applying district-cooling technology in Hong Kong," Applied Energy, Elsevier, vol. 79(3), pages 275-289, November.
    13. Fumo, Nelson & Chamra, Louay M., 2010. "Analysis of combined cooling, heating, and power systems based on source primary energy consumption," Applied Energy, Elsevier, vol. 87(6), pages 2023-2030, June.
    14. Hassan, A.A.M. & Hassan, M. Salah, 2008. "Dehumidification of air with a newly suggested liquid desiccant," Renewable Energy, Elsevier, vol. 33(9), pages 1989-1997.
    15. Ma, Zhenjun & Wang, Shengwei, 2011. "Supervisory and optimal control of central chiller plants using simplified adaptive models and genetic algorithm," Applied Energy, Elsevier, vol. 88(1), pages 198-211, January.
    16. Yu, F.W. & Chan, K.T., 2005. "Experimental determination of the energy efficiency of an air-cooled chiller under part load conditions," Energy, Elsevier, vol. 30(10), pages 1747-1758.
    17. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    18. Li, Qubo & Piechna, Janusz & Müller, Norbert, 2011. "Design of a novel axial impeller as a part of counter-rotating axial compressor to compress water vapor as refrigerant," Applied Energy, Elsevier, vol. 88(9), pages 3156-3168.
    19. Zhen, Li & Lin, D.M. & Shu, H.W. & Jiang, Shuang & Zhu, Y.X., 2007. "District cooling and heating with seawater as heat source and sink in Dalian, China," Renewable Energy, Elsevier, vol. 32(15), pages 2603-2616.
    20. Quoilin, Sylvain & Lemort, Vincent & Lebrun, Jean, 2010. "Experimental study and modeling of an Organic Rankine Cycle using scroll expander," Applied Energy, Elsevier, vol. 87(4), pages 1260-1268, April.
    21. Ge, Gaoming & Xiao, Fu & Xu, Xinhua, 2011. "Model-based optimal control of a dedicated outdoor air-chilled ceiling system using liquid desiccant and membrane-based total heat recovery," Applied Energy, Elsevier, vol. 88(11), pages 4180-4190.
    22. Yu, F.W. & Chan, K.T., 2012. "Improved energy management of chiller systems by multivariate and data envelopment analyses," Applied Energy, Elsevier, vol. 92(C), pages 168-174.
    23. Xiao, Fu & Ge, Gaoming & Niu, Xiaofeng, 2011. "Control performance of a dedicated outdoor air system adopting liquid desiccant dehumidification," Applied Energy, Elsevier, vol. 88(1), pages 143-149, January.
    24. Ho, J.C. & Chua, K.J. & Chou, S.K., 2004. "Performance study of a microturbine system for cogeneration application," Renewable Energy, Elsevier, vol. 29(7), pages 1121-1133.
    25. Moya, M. & Bruno, J.C. & Eguia, P. & Torres, E. & Zamora, I. & Coronas, A., 2011. "Performance analysis of a trigeneration system based on a micro gas turbine and an air-cooled, indirect fired, ammonia–water absorption chiller," Applied Energy, Elsevier, vol. 88(12), pages 4424-4440.
    26. Ge, T.S. & Dai, Y.J. & Li, Y. & Wang, R.Z., 2012. "Simulation investigation on solar powered desiccant coated heat exchanger cooling system," Applied Energy, Elsevier, vol. 93(C), pages 532-540.
    27. Du, S. & Wang, R.Z. & Lin, P. & Xu, Z.Z. & Pan, Q.W. & Xu, S.C., 2012. "Experimental studies on an air-cooled two-stage NH3-H2O solar absorption air-conditioning prototype," Energy, Elsevier, vol. 45(1), pages 581-587.
    28. Yu, X. & Wang, R.Z. & Zhai, X.Q., 2011. "Year round experimental study on a constant temperature and humidity air-conditioning system driven by ground source heat pump," Energy, Elsevier, vol. 36(2), pages 1309-1318.
    29. Chan, Apple L.S. & Chow, Tin-Tai & Fong, Square K.F. & Lin, John Z., 2006. "Performance evaluation of district cooling plant with ice storage," Energy, Elsevier, vol. 31(14), pages 2750-2762.
    30. Lam, Tony N.T. & Wan, Kevin K.W. & Wong, S.L. & Lam, Joseph C., 2010. "Impact of climate change on commercial sector air conditioning energy consumption in subtropical Hong Kong," Applied Energy, Elsevier, vol. 87(7), pages 2321-2327, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2015. "Experimental assessment of the energy performance of a hybrid desiccant cooling system and comparison with other air-conditioning technologies," Applied Energy, Elsevier, vol. 138(C), pages 533-545.
    2. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    3. Yan, Chengchu & Gang, Wenjie & Niu, Xiaofeng & Peng, Xujian & Wang, Shengwei, 2017. "Quantitative evaluation of the impact of building load characteristics on energy performance of district cooling systems," Applied Energy, Elsevier, vol. 205(C), pages 635-643.
    4. Gang, Wenjie & Wang, Shengwei & Xiao, Fu & Gao, Dian-ce, 2016. "District cooling systems: Technology integration, system optimization, challenges and opportunities for applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 253-264.
    5. Ge, Gaoming & Xiao, Fu & Xu, Xinhua, 2011. "Model-based optimal control of a dedicated outdoor air-chilled ceiling system using liquid desiccant and membrane-based total heat recovery," Applied Energy, Elsevier, vol. 88(11), pages 4180-4190.
    6. Mohammad, Abdulrahman Th. & Mat, Sohif Bin & Sopian, K. & Al-abidi, Abduljalil A., 2016. "Review: Survey of the control strategy of liquid desiccant systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 250-258.
    7. Rismanchi, B., 2017. "District energy network (DEN), current global status and future development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 571-579.
    8. Zhang, Ning & Yin, Shao-You & Li, Min, 2018. "Model-based optimization for a heat pump driven and hollow fiber membrane hybrid two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 228(C), pages 12-20.
    9. Min-Hwi Kim & Joon-Young Park & Jae-Weon Jeong, 2017. "Energy Saving Potential of a Thermoelectric Heat Pump-Assisted Liquid Desiccant System in a Dedicated Outdoor Air System," Energies, MDPI, vol. 10(9), pages 1-19, September.
    10. Chen, Qun & Wang, Yi-Fei & Xu, Yun-Chao, 2015. "A thermal resistance-based method for the optimal design of central variable water/air volume chiller systems," Applied Energy, Elsevier, vol. 139(C), pages 119-130.
    11. Zhuang, Chaoqun & Wang, Shengwei & Shan, Kui, 2020. "A risk-based robust optimal chiller sequencing control strategy for energy-efficient operation considering measurement uncertainties," Applied Energy, Elsevier, vol. 280(C).
    12. Zhang, Ning & Yin, Shao-You & Zhang, Li-Zhi, 2016. "Performance study of a heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 179(C), pages 727-737.
    13. Enteria, Napoleon & Yoshino, Hiroshi & Mochida, Akashi, 2013. "Review of the advances in open-cycle absorption air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 265-289.
    14. Wang, Xinli & Cai, Wenjian & Lu, Jiangang & Sun, Youxian & Ding, Xudong, 2013. "A hybrid dehumidifier model for real-time performance monitoring, control and optimization in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 111(C), pages 449-455.
    15. Rambhad, Kishor S. & Walke, Pramod V. & Tidke, D.J., 2016. "Solid desiccant dehumidification and regeneration methods—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 73-83.
    16. Neri, Manfredi & Guelpa, Elisa & Verda, Vittorio, 2022. "Design and connection optimization of a district cooling network: Mixed integer programming and heuristic approach," Applied Energy, Elsevier, vol. 306(PA).
    17. Inayat, Abrar & Raza, Mohsin, 2019. "District cooling system via renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 360-373.
    18. Gang, Wenjie & Wang, Shengwei & Gao, Diance & Xiao, Fu, 2015. "Performance assessment of district cooling systems for a new development district at planning stage," Applied Energy, Elsevier, vol. 140(C), pages 33-43.
    19. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2016. "State-of-the-art in liquid desiccant air conditioning equipment and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1152-1183.
    20. Kojok, Farah & Fardoun, Farouk & Younes, Rafic & Outbib, Rachid, 2016. "Hybrid cooling systems: A review and an optimized selection scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 57-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:104:y:2013:i:c:p:87-104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.