IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v114y2014icp909-923.html
   My bibliography  Save this article

Alternative methods of microorganism disruption for agricultural applications

Author

Listed:
  • Yusaf, Talal
  • Al-Juboori, Raed A.

Abstract

This paper reviews various non-conventional techniques for microorganism disruption. Microorganism disruption plays a pivotal role in various agricultural applications such as disinfection of irrigation water, processing of crops and livestock products and the newly emerging area of bioenergy production for agricultural uses. Methods of treatment to destroy microorganisms for the purposes of disinfection or extraction of bio-products can be generally categorized as either thermal treatment methods or non-thermal treatment methods. The thermal methods for microbial disruption are not favorable in many applications such as food processing and water treatment due to its negative impact on product quality and process performance. The discussion of thermal methods for microorganism disruption will not be included in this review. Non-thermal treatments are divided into two groups; chemical and physical treatments. Owing to the concerns of the health organisations with regards to the use of chemical methods for microorganism disruption, the recent research efforts have been directed towards exploring alternative physical methods for rupturing microorganisms. The common alternative physical methods for microorganism disruption include mechanical and non-mechanical treatments. This paper discusses in details the use of the common mechanical treatments for cell disintegration. Such methods include ultrasound, shock wave, High Pressure Homogenization (HPH), Hydrodynamic Cavitation (HC), shear stress, bead milling and micro-fluidizer. The application of the non-mechanical methods for microbial disruption such as electrical treatment, non-thermal plasma, Ultra-Violet (UV), non-conventional chemical methods and some other treatments are also briefly addressed in this paper. Due to the importance of the mechanical methods in the current cell disruption research, more attention is directed to these methods in this work.

Suggested Citation

  • Yusaf, Talal & Al-Juboori, Raed A., 2014. "Alternative methods of microorganism disruption for agricultural applications," Applied Energy, Elsevier, vol. 114(C), pages 909-923.
  • Handle: RePEc:eee:appene:v:114:y:2014:i:c:p:909-923
    DOI: 10.1016/j.apenergy.2013.08.085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913007290
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.08.085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2011. "Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production," Applied Energy, Elsevier, vol. 88(10), pages 3411-3424.
    2. Saddam H. Al-lwayzy & Talal Yusaf, 2013. "Chlorella protothecoides Microalgae as an Alternative Fuel for Tractor Diesel Engines," Energies, MDPI, vol. 6(2), pages 1-18, February.
    3. Halim, Ronald & Harun, Razif & Danquah, Michael K. & Webley, Paul A., 2012. "Microalgal cell disruption for biofuel development," Applied Energy, Elsevier, vol. 91(1), pages 116-121.
    4. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(1), pages 193-194, February.
    5. Toze, Simon, 2006. "Reuse of effluent water--benefits and risks," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 147-159, February.
    6. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(2), pages 541-545, April.
    7. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(4), pages 1007-1017, August.
    8. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1461-1465, December.
    9. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(5), pages 1273-1289, October.
    10. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(3), pages 819-821, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanxing Huang & Shengnan Qin & Daofang Zhang & Liang Li & Yan Mu, 2016. "Evaluation of Cell Disruption of Chlorella Vulgaris by Pressure-Assisted Ozonation and Ultrasonication," Energies, MDPI, vol. 9(3), pages 1-11, March.
    2. Teo, Siow Hwa & Islam, Aminul & Yusaf, Talal & Taufiq-Yap, Yun Hin, 2014. "Transesterification of Nannochloropsis oculata microalga's oil to biodiesel using calcium methoxide catalyst," Energy, Elsevier, vol. 78(C), pages 63-71.
    3. Kai-Ying Chiu, 2022. "The Changes in GABA, GAD and DAO Activities, and Microbial Safety of Soaking- and High Voltage Electric Field-Treated Adzuki Bean Sprouts," Agriculture, MDPI, vol. 12(4), pages 1-11, March.
    4. Djukić-Vuković, A. & Mladenović, D. & Ivanović, J. & Pejin, J. & Mojović, L., 2019. "Towards sustainability of lactic acid and poly-lactic acid polymers production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 238-252.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudia García-García & Catalina B. García-García & Román Salmerón, 2021. "Confronting collinearity in environmental regression models: evidence from world data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 895-926, September.
    2. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    3. Libura, Marek, 2007. "On the adjustment problem for linear programs," European Journal of Operational Research, Elsevier, vol. 183(1), pages 125-134, November.
    4. Christophe Loussouarn & Carine Franc & Yann Videau & Julien Mousquès, 2021. "Can General Practitioners Be More Productive? The Impact of Teamwork and Cooperation with Nurses on GP Activities," Health Economics, John Wiley & Sons, Ltd., vol. 30(3), pages 680-698, March.
    5. Tschakert, Petra, 2016. "Shifting Discourses of Vilification and the Taming of Unruly Mining Landscapes in Ghana," World Development, Elsevier, vol. 86(C), pages 123-132.
    6. María-Consuelo Casabán & Rafael Company & Lucas Jódar, 2020. "Non-Gaussian Quadrature Integral Transform Solution of Parabolic Models with a Finite Degree of Randomness," Mathematics, MDPI, vol. 8(7), pages 1-16, July.
    7. Isabelle Boutron & Peter John & David J. Torgerson, 2010. "Reporting Methodological Items in Randomized Experiments in Political Science," The ANNALS of the American Academy of Political and Social Science, , vol. 628(1), pages 112-131, March.
    8. Ben Slimane, Faten & Padilla Angulo, Laura, 2019. "Strategic change and corporate governance: Evidence from the stock exchange industry," Journal of Business Research, Elsevier, vol. 103(C), pages 206-218.
    9. Bossert, Walter & Derks, Jean & Peters, Hans, 2005. "Efficiency in uncertain cooperative games," Mathematical Social Sciences, Elsevier, vol. 50(1), pages 12-23, July.
    10. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    11. Sin-Yu Ho & N.M. Odhiambo, 2018. "Analysing the macroeconomic drivers of stock market development in the Philippines," Cogent Economics & Finance, Taylor & Francis Journals, vol. 6(1), pages 1451265-145, January.
    12. Natalia Nikolaevna Natocheeva* & Yuri Alexandrovich Rovensky & Yuri Yuryevich Rusanov & Tatiana Viktorovna Belyanchikova & Anna Anatolevna Staurskaya, 2018. "Optimizing Variability of Approaches to Regulatory Financing of Higher Education Services," The Journal of Social Sciences Research, Academic Research Publishing Group, pages 221-227:3.
    13. Philip Arestis & Howard Stein, 2005. "An Institutional Perspective to Finance and Development as an Alternative to Financial Liberalisation," International Review of Applied Economics, Taylor & Francis Journals, vol. 19(4), pages 381-398.
    14. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    15. Cabada, Alberto & Fernández-Gómez, Carlos, 2015. "Constant sign solutions of two-point fourth order problems," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 122-133.
    16. Andy Hall, 2005. "Capacity development for agricultural biotechnology in developing countries: an innovation systems view of what it is and how to develop it," Journal of International Development, John Wiley & Sons, Ltd., vol. 17(5), pages 611-630.
    17. Athinoula A. Kosti & Simon Colreavy-Donnelly & Fabio Caraffini & Zacharias A. Anastassi, 2020. "Efficient Computation of the Nonlinear Schrödinger Equation with Time-Dependent Coefficients," Mathematics, MDPI, vol. 8(3), pages 1-12, March.
    18. Bruno Frey, 2005. "Problems with Publishing: Existing State and Solutions," European Journal of Law and Economics, Springer, vol. 19(2), pages 173-190, April.
    19. Lan, Heng-you, 2021. "Approximation-solvability of population biology systems based on p-Laplacian elliptic inequalities with demicontinuous strongly pseudo-contractive operators," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    20. D. F. M. Torres & G. Leitmann, 2008. "Contrasting Two Transformation-based Methods for Obtaining Absolute Extrema," Journal of Optimization Theory and Applications, Springer, vol. 137(1), pages 53-59, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:114:y:2014:i:c:p:909-923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.