Advanced Search
MyIDEAS: Login to save this article or follow this journal

Mixtures of SF6–CO2 as working fluids for geothermal power plants

Contents:

Author Info

  • Yin, Hebi
  • Sabau, Adrian S.
  • Conklin, James C.
  • McFarlane, Joanna
  • Qualls, A. Lou
Registered author(s):

    Abstract

    In this paper, supercritical/transcritical thermodynamic cycles using mixtures of SF6–CO2 as working fluids were investigated for geothermal power plants. The system of equations that described the thermodynamic cycle was solved using a Newton–Raphson method. This approach allows a high computational efficiency even when thermophysical properties of the working fluid depend strongly on the temperature and pressure. The thermophysical properties of the mixtures were obtained from National Institute of Standards and Technology (NIST) REFPROP software and constituent cubic equations. The local heat transfer coefficients in the heat exchangers were calculated based on the local properties of the working fluid, geothermal brine, and cooling water. The heat exchanger areas required were calculated. Numerical simulation results presented for different cycle configurations were used to assess the effects of the SF6 fraction in CO2, brine temperature, and recuperator size on the cycle thermal efficiency, and size of heat exchangers for the evaporator and condenser. For working fluids with SF6, concentrations of 15 and 20mol% were found to yield the highest Brayton and Rankine cycle efficiencies, respectively.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913000718
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Applied Energy.

    Volume (Year): 106 (2013)
    Issue (Month): C ()
    Pages: 243-253

    as in new window
    Handle: RePEc:eee:appene:v:106:y:2013:i:c:p:243-253

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
    Web: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic

    Related research

    Keywords: Geothermal binary plant; SF6–CO2 mixture; Cycle efficiency; Heat transfer coefficient; Working fluid;

    Find related papers by JEL classification:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Liu, Qiang & Duan, Yuanyuan & Yang, Zhen, 2014. "Effect of condensation temperature glide on the performance of organic Rankine cycles with zeotropic mixture working fluids," Applied Energy, Elsevier, vol. 115(C), pages 394-404.
    2. Cheng, Wen-Long & Li, Tong-Tong & Nian, Yong-Le & Xie, Kun, 2014. "Evaluation of working fluids for geothermal power generation from abandoned oil wells," Applied Energy, Elsevier, vol. 118(C), pages 238-245.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:106:y:2013:i:c:p:243-253. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.