IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i5p3406-3418.html
   My bibliography  Save this article

Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery

Author

Listed:
  • Wang, E.H.
  • Zhang, H.G.
  • Fan, B.Y.
  • Ouyang, M.G.
  • Zhao, Y.
  • Mu, Q.H.

Abstract

Organic Rankine Cycle (ORC) could be used to recover low-grade waste heat. When a vehicle is running, the engine exhaust gas states have a wide range of variance. Defining the operational conditions of the ORC that achieve the maximum utilization of waste heat is important. In this paper the performance of different working fluids operating in specific regions was analyzed using a thermodynamic model built in Matlab together with REFPROP. Nine different pure organic working fluids were selected according to their physical and chemical properties. The results were compared in the regions when net power outputs were fixed at 10kW. Safety levels and environmental impacts were also evaluated. The outcomes indicate that R11, R141b, R113 and R123 manifest slightly higher thermodynamic performances than the others; however, R245fa and R245ca are the most environment-friendly working fluids for engine waste heat-recovery applications. The optimal control principle of ORC under the transient process is discussed based on the analytical results.

Suggested Citation

  • Wang, E.H. & Zhang, H.G. & Fan, B.Y. & Ouyang, M.G. & Zhao, Y. & Mu, Q.H., 2011. "Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery," Energy, Elsevier, vol. 36(5), pages 3406-3418.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:5:p:3406-3418
    DOI: 10.1016/j.energy.2011.03.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421100209X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.03.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Badr, O. & O'Callaghan, P. W. & Probert, S. D., 1985. "Thermodynamic and thermophysical properties of organic working fluids for Rankine-cycle engines," Applied Energy, Elsevier, vol. 19(1), pages 1-40.
    2. Madhawa Hettiarachchi, H.D. & Golubovic, Mihajlo & Worek, William M. & Ikegami, Yasuyuki, 2007. "Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources," Energy, Elsevier, vol. 32(9), pages 1698-1706.
    3. Yamamoto, Takahisa & Furuhata, Tomohiko & Arai, Norio & Mori, Koichi, 2001. "Design and testing of the Organic Rankine Cycle," Energy, Elsevier, vol. 26(3), pages 239-251.
    4. Liu, Bo-Tau & Chien, Kuo-Hsiang & Wang, Chi-Chuan, 2004. "Effect of working fluids on organic Rankine cycle for waste heat recovery," Energy, Elsevier, vol. 29(8), pages 1207-1217.
    5. Angelino, Gianfranco & Colonna di Paliano, Piero, 1998. "Multicomponent Working Fluids For Organic Rankine Cycles (ORCs)," Energy, Elsevier, vol. 23(6), pages 449-463.
    6. David Orr, 1999. "Book," Journal of Industrial Ecology, Yale University, vol. 3(4), pages 155-156, October.
    7. Saleh, Bahaa & Koglbauer, Gerald & Wendland, Martin & Fischer, Johann, 2007. "Working fluids for low-temperature organic Rankine cycles," Energy, Elsevier, vol. 32(7), pages 1210-1221.
    8. Hung, T.C. & Shai, T.Y. & Wang, S.K., 1997. "A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat," Energy, Elsevier, vol. 22(7), pages 661-667.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghasemi, Hadi & Paci, Marco & Tizzanini, Alessio & Mitsos, Alexander, 2013. "Modeling and optimization of a binary geothermal power plant," Energy, Elsevier, vol. 50(C), pages 412-428.
    2. Tian, Hua & Shu, Gequn & Wei, Haiqiao & Liang, Xingyu & Liu, Lina, 2012. "Fluids and parameters optimization for the organic Rankine cycles (ORCs) used in exhaust heat recovery of Internal Combustion Engine (ICE)," Energy, Elsevier, vol. 47(1), pages 125-136.
    3. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    4. Hong Gao & Chao Liu & Chao He & Xiaoxiao Xu & Shuangying Wu & Yourong Li, 2012. "Performance Analysis and Working Fluid Selection of a Supercritical Organic Rankine Cycle for Low Grade Waste Heat Recovery," Energies, MDPI, vol. 5(9), pages 1-15, August.
    5. Aljundi, Isam H., 2011. "Effect of dry hydrocarbons and critical point temperature on the efficiencies of organic Rankine cycle," Renewable Energy, Elsevier, vol. 36(4), pages 1196-1202.
    6. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    7. Kang, Seok Hun, 2012. "Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid," Energy, Elsevier, vol. 41(1), pages 514-524.
    8. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    9. Qiu, Guoquan, 2012. "Selection of working fluids for micro-CHP systems with ORC," Renewable Energy, Elsevier, vol. 48(C), pages 565-570.
    10. Li, Tailu & Fu, Wencheng & Zhu, Jialing, 2014. "An integrated optimization for organic Rankine cycle based on entransy theory and thermodynamics," Energy, Elsevier, vol. 72(C), pages 561-573.
    11. Roy, J.P. & Misra, Ashok, 2012. "Parametric optimization and performance analysis of a regenerative Organic Rankine Cycle using R-123 for waste heat recovery," Energy, Elsevier, vol. 39(1), pages 227-235.
    12. Bao, Junjiang & Zhao, Li, 2012. "Exergy analysis and parameter study on a novel auto-cascade Rankine cycle," Energy, Elsevier, vol. 48(1), pages 539-547.
    13. Shalaby, S.M., 2017. "Reverse osmosis desalination powered by photovoltaic and solar Rankine cycle power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 789-797.
    14. Steven Lecompte & Sanne Lemmens & Henk Huisseune & Martijn Van den Broek & Michel De Paepe, 2015. "Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery," Energies, MDPI, vol. 8(4), pages 1-28, April.
    15. Kuo, Chi-Ron & Hsu, Sung-Wei & Chang, Kai-Han & Wang, Chi-Chuan, 2011. "Analysis of a 50kW organic Rankine cycle system," Energy, Elsevier, vol. 36(10), pages 5877-5885.
    16. Rashidi, M.M. & Galanis, N. & Nazari, F. & Basiri Parsa, A. & Shamekhi, L., 2011. "Parametric analysis and optimization of regenerative Clausius and organic Rankine cycles with two feedwater heaters using artificial bees colony and artificial neural network," Energy, Elsevier, vol. 36(9), pages 5728-5740.
    17. Fernández, F.J. & Prieto, M.M. & Suárez, I., 2011. "Thermodynamic analysis of high-temperature regenerative organic Rankine cycles using siloxanes as working fluids," Energy, Elsevier, vol. 36(8), pages 5239-5249.
    18. Wang, Hailei & Peterson, Richard & Harada, Kevin & Miller, Erik & Ingram-Goble, Robbie & Fisher, Luke & Yih, James & Ward, Chris, 2011. "Performance of a combined organic Rankine cycle and vapor compression cycle for heat activated cooling," Energy, Elsevier, vol. 36(1), pages 447-458.
    19. Roy, J.P. & Mishra, M.K. & Misra, Ashok, 2010. "Parametric optimization and performance analysis of a waste heat recovery system using Organic Rankine Cycle," Energy, Elsevier, vol. 35(12), pages 5049-5062.
    20. Wang, Jiangfeng & Dai, Yiping & Gao, Lin, 2009. "Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry," Applied Energy, Elsevier, vol. 86(6), pages 941-948, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:5:p:3406-3418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.