IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v269y2022ics0378377422002670.html
   My bibliography  Save this article

Simulation modeling for effective management of irrigation water for winter wheat

Author

Listed:
  • Shen, Hongzheng
  • Wang, Yue
  • Jiang, Kongtao
  • Li, Shilei
  • Huang, Donghua
  • Wu, Jiujiang
  • Wang, Yongqiang
  • Wang, Yangren
  • Ma, Xiaoyi

Abstract

Lack of water resources, low irrigation efficiency, and inappropriate irrigation decisions severely restrict agricultural production in arid and semi-arid regions. Therefore, rapid and accurate decision-making regarding crop irrigation in real time is necessary. This study optimized irrigation scheduling by using information on different meteorological years and obtained the average soil water content (0–60 cm) before each irrigation, the corresponding irrigation time, and the water available for irrigation. The relative development speed of winter wheat and the amount of water available for irrigation were considered, and a dynamic irrigation water limit model was constructed. Winter wheat field experiments over 3 years (2016–2019) were followed by an evaluation of the regional applicability of the decision support system for the agrotechnology transfer model. A long short-term memory network effectively predicted air temperature and solar radiation; the R2 and root mean square error values were 0.802–0.964% and 12.53–23.9%, respectively. Public weather forecasts can be used to accurately predict rainfall, with 87.3% and 57% accuracy rates for forecasts of no rain and rain, respectively. Compared with traditional irrigation, the use of this dynamic irrigation lower limit for irrigation forecasting can increase yield and attendant net benefits. When two and three irrigation treatments were applied during the winter wheat growth period, the 3-year average yield increased by 10.3% and 4.4%, respectively, and the net benefit increased by 19.1% and 7.4%, respectively. The proposed method avoids relying on only field experiments to determine the irrigation lower limit and allows for the effective implementation of optimized irrigation schedules and the dynamic correction of irrigation plans in arid and semi-arid areas.

Suggested Citation

  • Shen, Hongzheng & Wang, Yue & Jiang, Kongtao & Li, Shilei & Huang, Donghua & Wu, Jiujiang & Wang, Yongqiang & Wang, Yangren & Ma, Xiaoyi, 2022. "Simulation modeling for effective management of irrigation water for winter wheat," Agricultural Water Management, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:agiwat:v:269:y:2022:i:c:s0378377422002670
    DOI: 10.1016/j.agwat.2022.107720
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422002670
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107720?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Jianqiang & Jones, James W. & Graham, Wendy D. & Dukes, Michael D., 2010. "Influence of likelihood function choice for estimating crop model parameters using the generalized likelihood uncertainty estimation method," Agricultural Systems, Elsevier, vol. 103(5), pages 256-264, June.
    2. Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
    3. Jing, Qi & McConkey, Brian & Qian, Budong & Smith, Ward & Grant, Brian & Shang, Jiali & Liu, Jiangui & Bindraban, Prem & Luce, Mervin St., 2021. "Assessing water management effects on spring wheat yield in the Canadian Prairies using DSSAT wheat models," Agricultural Water Management, Elsevier, vol. 244(C).
    4. Byung-ki Jeon & Eui-Jong Kim, 2020. "Next-Day Prediction of Hourly Solar Irradiance Using Local Weather Forecasts and LSTM Trained with Non-Local Data," Energies, MDPI, vol. 13(20), pages 1-16, October.
    5. Brown, Peter D. & Cochrane, Thomas A. & Krom, Thomas D., 2010. "Optimal on-farm irrigation scheduling with a seasonal water limit using simulated annealing," Agricultural Water Management, Elsevier, vol. 97(6), pages 892-900, June.
    6. Zou, Yufeng & Saddique, Qaisar & Ali, Ajaz & Xu, Jiatun & Khan, Muhammad Imran & Qing, Mu & Azmat, Muhammad & Cai, Huanjie & Siddique, Kadambot H.M., 2021. "Deficit irrigation improves maize yield and water use efficiency in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 243(C).
    7. Behera, S.K. & Panda, R.K., 2009. "Integrated management of irrigation water and fertilizers for wheat crop using field experiments and simulation modeling," Agricultural Water Management, Elsevier, vol. 96(11), pages 1532-1540, November.
    8. Lu, Junsheng & Geng, Chenming & Cui, Xiaolu & Li, Mengyue & Chen, Shuaihong & Hu, Tiantian, 2021. "Response of drip fertigated wheat-maize rotation system on grain yield, water productivity and economic benefits using different water and nitrogen amounts," Agricultural Water Management, Elsevier, vol. 258(C).
    9. Bai, Yu & Gao, Jinhua, 2021. "Optimization of the nitrogen fertilizer schedule of maize under drip irrigation in Jilin, China, based on DSSAT and GA," Agricultural Water Management, Elsevier, vol. 244(C).
    10. Singh, Anil Kumar & Tripathy, Rojalin & Chopra, Usha Kiran, 2008. "Evaluation of CERES-Wheat and CropSyst models for water-nitrogen interactions in wheat crop," Agricultural Water Management, Elsevier, vol. 95(7), pages 776-786, July.
    11. Shang, Songhao & Mao, Xiaomin, 2006. "Application of a simulation based optimization model for winter wheat irrigation scheduling in North China," Agricultural Water Management, Elsevier, vol. 85(3), pages 314-322, October.
    12. Qing, Xiangyun & Niu, Yugang, 2018. "Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM," Energy, Elsevier, vol. 148(C), pages 461-468.
    13. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    14. Jingwen Zhang & Kaiyu Guan & Bin Peng & Ming Pan & Wang Zhou & Chongya Jiang & Hyungsuk Kimm & Trenton E. Franz & Robert F. Grant & Yi Yang & Daran R. Rudnick & Derek M. Heeren & Andrew E. Suyker & Wi, 2021. "Sustainable irrigation based on co-regulation of soil water supply and atmospheric evaporative demand," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lankford, B. & Makin, Ian & Matthews, N. & McCornick, Peter G. & Noble, A. & Shah, Tushaar, "undated". "A compact to revitalise large-scale irrigation systems using a leadership-partnership-ownership 'Theory of Change'," Papers published in Journals (Open Access) H047459, International Water Management Institute.
    2. Liu, Jing & Hertel, Thomas & Lammers, Richard & Prusevich, Alexander & Baldos, Uris Lantz & Grogan, Danielle & Frolking, Steve, 2016. "Achieving Sustainable Irrigation Water Withdrawals: Global Impacts on Food Production and Land Use," Conference papers 332691, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    3. Nourani, Vahid & Sharghi, Elnaz & Behfar, Nazanin & Zhang, Yongqiang, 2022. "Multi-step-ahead solar irradiance modeling employing multi-frequency deep learning models and climatic data," Applied Energy, Elsevier, vol. 315(C).
    4. Andrew J. Wiltshire & Gillian Kay & Jemma L. Gornall & Richard A. Betts, 2013. "The Impact of Climate, CO 2 and Population on Regional Food and Water Resources in the 2050s," Sustainability, MDPI, vol. 5(5), pages 1-23, May.
    5. Vu, Ba Hau & Chung, Il-Yop, 2022. "Optimal generation scheduling and operating reserve management for PV generation using RNN-based forecasting models for stand-alone microgrids," Renewable Energy, Elsevier, vol. 195(C), pages 1137-1154.
    6. Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
    7. Karimov, Akmal Kh. & Šimůnek, Jirka & Hanjra, Munir A. & Avliyakulov, Mirzaolim & Forkutsa, Irina, 2014. "Effects of the shallow water table on water use of winter wheat and ecosystem health: Implications for unlocking the potential of groundwater in the Fergana Valley (Central Asia)," Agricultural Water Management, Elsevier, vol. 131(C), pages 57-69.
    8. Leghari, Shah Jahan & Hu, Kelin & Wei, Yichang & Wang, Tongchao & Bhutto, Tofique Ahmed & Buriro, Mahmooda, 2021. "Modelling water consumption, N fates and maize yield under different water-saving management practices in China and Pakistan," Agricultural Water Management, Elsevier, vol. 255(C).
    9. Zhang, Chenglong & Engel, Bernard A. & Guo, Ping, 2018. "An Interval-based Fuzzy Chance-constrained Irrigation Water Allocation model with double-sided fuzziness," Agricultural Water Management, Elsevier, vol. 210(C), pages 22-31.
    10. Yu, Liuyang & Zhao, Xining & Gao, Xiaodong & Siddique, Kadambot H.M., 2020. "Improving/maintaining water-use efficiency and yield of wheat by deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 228(C).
    11. Zhou, Huiping & Chen, Jinliang & Wang, Feng & Li, Xiaojuan & Génard, Michel & Kang, Shaozhong, 2020. "An integrated irrigation strategy for water-saving and quality-improving of cash crops: Theory and practice in China," Agricultural Water Management, Elsevier, vol. 241(C).
    12. Becker, Rike & Schüth, Christoph & Merz, Ralf & Khaliq, Tasneem & Usman, Muhammad & Beek, Tim aus der & Kumar, Rohini & Schulz, Stephan, 2023. "Increased heat stress reduces future yields of three major crops in Pakistan’s Punjab region despite intensification of irrigation," Agricultural Water Management, Elsevier, vol. 281(C).
    13. Ejaz Qureshi, M. & Hanjra, Munir A. & Ward, John, 2013. "Impact of water scarcity in Australia on global food security in an era of climate change," Food Policy, Elsevier, vol. 38(C), pages 136-145.
    14. Wen, Yeqiang & Shang, Songhao & Yang, Jian, 2017. "Optimization of irrigation scheduling for spring wheat with mulching and limited irrigation water in an arid climate," Agricultural Water Management, Elsevier, vol. 192(C), pages 33-44.
    15. Khalil, Hamidreza Mirzaei & Esfandiari, Mahdi & Shahraki, Javad & Yaghoubi, Morteza, 2016. "Assessment of Water Use Efficiency Indices in Selected Plains of Fars Province, Iran," International Journal of Agricultural Management and Development (IJAMAD), Iranian Association of Agricultural Economics, vol. 6(2), June.
    16. Xiaoxia Zou & Yu-e Li & Qingzhu Gao & Yunfan Wan, 2012. "How water saving irrigation contributes to climate change resilience—a case study of practices in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(2), pages 111-132, February.
    17. Konduru Sudharshan & C. Naveen & Pradeep Vishnuram & Damodhara Venkata Siva Krishna Rao Kasagani & Benedetto Nastasi, 2022. "Systematic Review on Impact of Different Irradiance Forecasting Techniques for Solar Energy Prediction," Energies, MDPI, vol. 15(17), pages 1-39, August.
    18. Zhang, Wang & Tian, Yong & Sun, Zan & Zheng, Chunmiao, 2021. "How does plastic film mulching affect crop water productivity in an arid river basin?," Agricultural Water Management, Elsevier, vol. 258(C).
    19. Li, Dazhi & Hendricks Franssen, Harrie-Jan & Han, Xujun & Jiménez-Bello, Miguel Angel & Martínez Alzamora, Fernando & Vereecken, Harry, 2018. "Evaluation of an operational real-time irrigation scheduling scheme for drip irrigated citrus fields in Picassent, Spain," Agricultural Water Management, Elsevier, vol. 208(C), pages 465-477.
    20. Matteau, Jean-Pascal & Célicourt, Paul & Létourneau, Guillaume & Gumiere, Thiago & Gumiere, Silvio J., 2022. "Effects of irrigation thresholds and temporal distribution on potato yield and water productivity in sandy soil," Agricultural Water Management, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:269:y:2022:i:c:s0378377422002670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.