IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v266y2022ics0378377422000968.html
   My bibliography  Save this article

Planning water-food-ecology nexus system under uncertainty: Tradeoffs and synergies in Central Asia

Author

Listed:
  • Ma, Y.
  • Li, Y.P.
  • Huang, G.H.
  • Zhang, Y.F.
  • Liu, Y.R.
  • Wang, H.
  • Ding, Y.K.

Abstract

Vicious competition for limited water resources hinders the synergetic and sustainable development of Central Asian countries, which further threatens food security and exacerbates ecological degradation. In this study, a copula-based bi-level decentralized programming (CBDP) method is developed and applied to planning water-food-ecology (WFE) nexus system. CBDP has advantages in balancing tradeoffs between different decision levels, analyzing synergies among multiple managers and reflecting joint risks of interrelated uncertain parameters. Then, a CBDP-WFE model is formulated for Central Asia, where the upper-level model aims to maximize system benefit for the region (i.e. regional-scale), and the lower-level model involves five objectives to maximize five countries’ benefits (i.e. national-scale) respectively. Totally 108 scenarios are designed to analyze the impacts of joint constraint-violation risk, agricultural irrigation efficiency, and ecological water demand. Results reveal that (i) improving agricultural irrigation efficiency can optimize the water allocation pattern as well as increase the system benefit; (ii) in order to restore the regional eco-environment, the proportion of ecological water allocation should increase from 7% (of the current level) to 14.9–23.8% (by 2050); (iii) water allocations to Uzbekistan and Tajikistan should be properly controlled especially when available water is scarce. The results are helpful for managers in not only making decisions of water allocation among multiple users and countries but also gaining insight into synergetic management of WFE nexus under various system conditions.

Suggested Citation

  • Ma, Y. & Li, Y.P. & Huang, G.H. & Zhang, Y.F. & Liu, Y.R. & Wang, H. & Ding, Y.K., 2022. "Planning water-food-ecology nexus system under uncertainty: Tradeoffs and synergies in Central Asia," Agricultural Water Management, Elsevier, vol. 266(C).
  • Handle: RePEc:eee:agiwat:v:266:y:2022:i:c:s0378377422000968
    DOI: 10.1016/j.agwat.2022.107549
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422000968
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107549?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xiaodong & Vesselinov, Velimir V., 2016. "Energy-water nexus: Balancing the tradeoffs between two-level decision makers," Applied Energy, Elsevier, vol. 183(C), pages 77-87.
    2. Hong Wang & Xiaodong Zhang, 2018. "A Decentralized Bi-Level Fuzzy Two-Stage Decision Model for Flood Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1615-1629, March.
    3. Sun, J. & Li, Y.P. & Suo, C. & Liu, J., 2020. "Development of an uncertain water-food-energy nexus model for pursuing sustainable agricultural and electric productions," Agricultural Water Management, Elsevier, vol. 241(C).
    4. Yue, Qiong & Guo, Ping, 2021. "Managing agricultural water-energy-food-environment nexus considering water footprint and carbon footprint under uncertainty," Agricultural Water Management, Elsevier, vol. 252(C).
    5. Olli Varis, 2014. "Resources: Curb vast water use in central Asia," Nature, Nature, vol. 514(7520), pages 27-29, October.
    6. Li, Y.P. & Liu, J. & Huang, G.H., 2014. "A hybrid fuzzy-stochastic programming method for water trading within an agricultural system," Agricultural Systems, Elsevier, vol. 123(C), pages 71-83.
    7. Arora, S.R. & Gupta, Ritu, 2009. "Interactive fuzzy goal programming approach for bilevel programming problem," European Journal of Operational Research, Elsevier, vol. 194(2), pages 368-376, April.
    8. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    9. Chen, Shu & Xu, Jijun & Li, Qingqing & Tan, Xuezhi & Nong, Xizhi, 2019. "A copula-based interval-bistochastic programming method for regional water allocation under uncertainty," Agricultural Water Management, Elsevier, vol. 217(C), pages 154-164.
    10. Guangquan Zhang & Jie Lu, 2010. "Fuzzy bilevel programming with multiple objectives and cooperative multiple followers," Journal of Global Optimization, Springer, vol. 47(3), pages 403-419, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong Wang & Xiaodong Zhang, 2018. "A Decentralized Bi-Level Fuzzy Two-Stage Decision Model for Flood Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1615-1629, March.
    2. Yue, Qiong & Guo, Ping & Wu, Hui & Wang, Youzhi & Zhang, Chenglong, 2022. "Towards sustainable circular agriculture: An integrated optimization framework for crop-livestock-biogas-crop recycling system management under uncertainty," Agricultural Systems, Elsevier, vol. 196(C).
    3. Hua Ke & Junjie Ma & Guangdong Tian, 2017. "Hybrid multilevel programming with uncertain random parameters," Journal of Intelligent Manufacturing, Springer, vol. 28(3), pages 589-596, March.
    4. Fabrizio Durante & Erich Klement & Carlo Sempi & Manuel Úbeda-Flores, 2010. "Measures of non-exchangeability for bivariate random vectors," Statistical Papers, Springer, vol. 51(3), pages 687-699, September.
    5. Fernández-Blanco, R. & Kavvadias, K. & Hidalgo González, I., 2017. "Quantifying the water-power linkage on hydrothermal power systems: A Greek case study," Applied Energy, Elsevier, vol. 203(C), pages 240-253.
    6. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    7. Jevtić, P. & Hurd, T.R., 2017. "The joint mortality of couples in continuous time," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 90-97.
    8. Albrecher Hansjörg & Kantor Josef, 2002. "Simulation of ruin probabilities for risk processes of Markovian type," Monte Carlo Methods and Applications, De Gruyter, vol. 8(2), pages 111-128, December.
    9. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    10. Cai, Yanpeng & Cai, Jianying & Xu, Linyu & Tan, Qian & Xu, Qiao, 2019. "Integrated risk analysis of water-energy nexus systems based on systems dynamics, orthogonal design and copula analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 125-137.
    11. Y. Malevergne & D. Sornette, 2003. "Testing the Gaussian copula hypothesis for financial assets dependences," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 231-250.
    12. Dominik Kortschak & Hansjörg Albrecher, 2009. "Asymptotic Results for the Sum of Dependent Non-identically Distributed Random Variables," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 279-306, September.
    13. Christian Genest & Johanna Nešlehová & Johanna Ziegel, 2011. "Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 223-256, August.
    14. Hoyle, Edward & Mengütürk, Levent Ali, 2013. "Archimedean survival processes," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 1-15.
    15. Paulson, Nicholas David, 2004. "Insuring uncertainty in value-added agriculture: ethanol," ISU General Staff Papers 2004010108000018198, Iowa State University, Department of Economics.
    16. Han, Qinkai & Wang, Tianyang & Chu, Fulei, 2022. "Nonparametric copula modeling of wind speed-wind shear for the assessment of height-dependent wind energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    17. Zhengjun Zhang, 2009. "On approximating max-stable processes and constructing extremal copula functions," Statistical Inference for Stochastic Processes, Springer, vol. 12(1), pages 89-114, February.
    18. Dexen DZ. Xi & C.B. Dean & Stephen W. Taylor, 2020. "Modeling the duration and size of extended attack wildfires as dependent outcomes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    19. Tsolas, Spyridon D. & Karim, M. Nazmul & Hasan, M.M. Faruque, 2018. "Optimization of water-energy nexus: A network representation-based graphical approach," Applied Energy, Elsevier, vol. 224(C), pages 230-250.
    20. Henryk Gurgul & Roland Mestel & Robert Syrek, 2008. "Polish Stock Market and some foreign markets - dependence analysis by copulas," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 18(2), pages 17-35.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:266:y:2022:i:c:s0378377422000968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.