IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v217y2019icp154-164.html
   My bibliography  Save this article

A copula-based interval-bistochastic programming method for regional water allocation under uncertainty

Author

Listed:
  • Chen, Shu
  • Xu, Jijun
  • Li, Qingqing
  • Tan, Xuezhi
  • Nong, Xizhi

Abstract

In regional water resources allcoation problems, the uncertainties of hydrological variables and socio-economic parameters are bringing huge challenges to water managers. So far, the stochastic programming models have difficulty in addressing uncertain problems, in which there are two correlated random variables. In order to address regional water resources allocation under two hydrological random variables and interval parameters, a couple-based interval-bistochastic programming (CIBSP) method is proposed. The CIBSP method includes several key steps: first, the marginal distributions of the two hydrological variables are analyzed and hydrological scenarios are set; then, the copula is chosen to analyze joint probability distribution of the two hydrological variables and the joint probabilities of scenarios are calculated; last, an interval-bistochastic model is formulated by incorporating two-stage stochastic programming, interval-parameter programming, and bivariate joint distribution. The CIBSP method can describe the probability of occurrence of a hydrological scenario and then make an optimized water allocation scheme under uncertainties. To demonstrate its applicability, the CIBSP method is applied to the Zhanghe Irrigation District located in China, to optimize available water allocation under the uncertainties of the annual inflow volume of the Zhanghe Reservoir and annual rainfall volume in the irrigated district. An appropriate water allocation plan can be obtained by the method, which provides a foundation to water managers for managing water resources in Zhanghe Irrigation District. Moreover, other two hypothetical situations named independence hypothetical situation and linear relationship hypothetical situation are discussed. The difference in the results between the two hypothetical situations and the case study indicates that an appropriate description of the joint probability of the annual inflow volume and annual rainfall volume by using CIBSP method is important for water resource allocation under uncertainties.

Suggested Citation

  • Chen, Shu & Xu, Jijun & Li, Qingqing & Tan, Xuezhi & Nong, Xizhi, 2019. "A copula-based interval-bistochastic programming method for regional water allocation under uncertainty," Agricultural Water Management, Elsevier, vol. 217(C), pages 154-164.
  • Handle: RePEc:eee:agiwat:v:217:y:2019:i:c:p:154-164
    DOI: 10.1016/j.agwat.2019.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419303075
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.02.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maqsood, Imran & Huang, Guo H. & Scott Yeomans, Julian, 2005. "An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 208-225, November.
    2. Li, Y.P. & Huang, G.H. & Nie, S.L. & Chen, X., 2011. "A robust modeling approach for regional water management under multiple uncertainties," Agricultural Water Management, Elsevier, vol. 98(10), pages 1577-1588, August.
    3. Aliasghar Montazar & H. Riazi & S. Behbahani, 2010. "Conjunctive Water Use Planning in an Irrigation Command Area," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(3), pages 577-596, February.
    4. Roost, N. & Cai, X.L. & Molden, D. & Cui, Y.L., 2008. "Adapting to intersectoral transfers in the Zhanghe Irrigation System, China: Part I. In-system storage characteristics," Agricultural Water Management, Elsevier, vol. 95(6), pages 698-706, June.
    5. Shangguan, Zhouping & Shao, Mingan & Horton, Robert & Lei, Tingwu & Qin, Lin & Ma, Jianqing, 2002. "A model for regional optimal allocation of irrigation water resources under deficit irrigation and its applications," Agricultural Water Management, Elsevier, vol. 52(2), pages 139-154, January.
    6. M. Reddy & D. Kumar, 2006. "Optimal Reservoir Operation Using Multi-Objective Evolutionary Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(6), pages 861-878, December.
    7. H. Lu & G. Huang & G. Zeng & I. Maqsood & L. He, 2008. "An Inexact Two-stage Fuzzy-stochastic Programming Model for Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(8), pages 991-1016, August.
    8. Chen, Shu & Shao, Dongguo & Gu, Wenquan & Xu, Baoli & Li, Haoxin & Fang, Longzhang, 2017. "An interval multistage water allocation model for crop different growth stages under inputs uncertainty," Agricultural Water Management, Elsevier, vol. 186(C), pages 86-97.
    9. Paritosh Srivastava & Raj Singh, 2015. "Optimization of Cropping Pattern in a Canal Command Area Using Fuzzy Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4481-4500, September.
    10. Chen, Shu & Shao, Dongguo & Tan, Xuezhi & Gu, Wenquan & Lei, Caixiu, 2017. "An interval multistage classified model for regional inter- and intra-seasonal water management under uncertain and nonstationary condition," Agricultural Water Management, Elsevier, vol. 191(C), pages 98-112.
    11. Roost, N. & Cai, X.L. & Turral, H. & Molden, D. & Cui, Y.L., 2008. "Adapting to intersectoral transfers in the Zhanghe Irrigation System, China: Part II: Impacts of in-system storage on water balance and productivity," Agricultural Water Management, Elsevier, vol. 95(6), pages 685-697, June.
    12. Juran Ahmed & Arup Sarma, 2005. "Genetic Algorithm for Optimal Operating Policy of a Multipurpose Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(2), pages 145-161, April.
    13. Li, W. & Li, Y.P. & Li, C.H. & Huang, G.H., 2010. "An inexact two-stage water management model for planning agricultural irrigation under uncertainty," Agricultural Water Management, Elsevier, vol. 97(11), pages 1905-1914, November.
    14. C. Li & L. Zhang, 2015. "An Inexact Two-Stage Allocation Model for Water Resources Management Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1823-1841, April.
    15. Shu Chen & Dongguo Shao & Xudong Li & Caixiu Lei, 2016. "Simulation-Optimization Modeling of Conjunctive Operation of Reservoirs and Ponds for Irrigation of Multiple Crops Using an Improved Artificial Bee Colony Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 2887-2905, July.
    16. Abdallah Ben Alaya & Abderrazek Souissi & Jamila Tarhouni & Kamel Ncib, 2003. "Optimization of Nebhana Reservoir Water Allocation by Stochastic Dynamic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 17(4), pages 259-272, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Haofang & Li, Mi & Zhang, Chuan & Zhang, Jianyun & Wang, Guoqing & Yu, Jianjun & Ma, Jiamin & Zhao, Shuang, 2022. "Comparison of evapotranspiration upscaling methods from instantaneous to daytime scale for tea and wheat in southeast China," Agricultural Water Management, Elsevier, vol. 264(C).
    2. Wencong Yue & Zhongqi Liu & Meirong Su & Meng Xu & Qiangqiang Rong & Chao Xu & Zhenkun Tan & Xuming Jiang & Zhixin Su & Yanpeng Cai, 2022. "Inclusion of Ecological Water Requirements in Optimization of Water Resource Allocation Under Changing Climatic Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 551-570, January.
    3. Ma, Y. & Li, Y.P. & Huang, G.H. & Zhang, Y.F. & Liu, Y.R. & Wang, H. & Ding, Y.K., 2022. "Planning water-food-ecology nexus system under uncertainty: Tradeoffs and synergies in Central Asia," Agricultural Water Management, Elsevier, vol. 266(C).
    4. Zuo, Qiting & Wu, Qingsong & Yu, Lei & Li, Yongping & Fan, Yurui, 2021. "Optimization of uncertain agricultural management considering the framework of water, energy and food," Agricultural Water Management, Elsevier, vol. 253(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Shu & Shao, Dongguo & Tan, Xuezhi & Gu, Wenquan & Lei, Caixiu, 2017. "An interval multistage classified model for regional inter- and intra-seasonal water management under uncertain and nonstationary condition," Agricultural Water Management, Elsevier, vol. 191(C), pages 98-112.
    2. Chen, Shu & Shao, Dongguo & Gu, Wenquan & Xu, Baoli & Li, Haoxin & Fang, Longzhang, 2017. "An interval multistage water allocation model for crop different growth stages under inputs uncertainty," Agricultural Water Management, Elsevier, vol. 186(C), pages 86-97.
    3. Ajay Singh, 2014. "Irrigation Planning and Management Through Optimization Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(1), pages 1-14, January.
    4. Yue, Qiong & Zhang, Fan & Zhang, Chenglong & Zhu, Hua & Tang, Yikuan & Guo, Ping, 2020. "A full fuzzy-interval credibility-constrained nonlinear programming approach for irrigation water allocation under uncertainty," Agricultural Water Management, Elsevier, vol. 230(C).
    5. Shu Chen & Dongguo Shao & Xudong Li & Caixiu Lei, 2016. "Simulation-Optimization Modeling of Conjunctive Operation of Reservoirs and Ponds for Irrigation of Multiple Crops Using an Improved Artificial Bee Colony Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 2887-2905, July.
    6. C. Li & L. Zhang, 2015. "An Inexact Two-Stage Allocation Model for Water Resources Management Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1823-1841, April.
    7. Seyed-Mohammad Hosseini-Moghari & Reza Morovati & Mohammad Moghadas & Shahab Araghinejad, 2015. "Optimum Operation of Reservoir Using Two Evolutionary Algorithms: Imperialist Competitive Algorithm (ICA) and Cuckoo Optimization Algorithm (COA)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3749-3769, August.
    8. Ajay Singh, 2016. "Optimal Allocation of Resources for Increasing Farm Revenue under Hydrological Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2569-2580, May.
    9. Huang, Y. & Li, Y.P. & Chen, X. & Ma, Y.G., 2012. "Optimization of the irrigation water resources for agricultural sustainability in Tarim River Basin, China," Agricultural Water Management, Elsevier, vol. 107(C), pages 74-85.
    10. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    11. Weiwei Shao & Dawen Yang & Heping Hu & Kenji Sanbongi, 2009. "Water Resources Allocation Considering the Water Use Flexible Limit to Water Shortage—A Case Study in the Yellow River Basin of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 869-880, March.
    12. Abbas Amini Fasakhodi & Seyed Nouri & Manouchehr Amini, 2010. "Water Resources Sustainability and Optimal Cropping Pattern in Farming Systems; A Multi-Objective Fractional Goal Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4639-4657, December.
    13. Ajay Singh & Sudhindra Panda, 2013. "Optimization and Simulation Modelling for Managing the Problems of Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3421-3431, July.
    14. Singh, Ajay & Panda, Sudhindra Nath, 2012. "Development and application of an optimization model for the maximization of net agricultural return," Agricultural Water Management, Elsevier, vol. 115(C), pages 267-275.
    15. Mukherji, Aditi & Facon, T. & Molden, David & Chartres, Colin, 2010. "Growing more food with less water: how can revitalizing Asia\u2019s irrigation help?," Conference Papers h043241, International Water Management Institute.
    16. Zhou, Jianzhong & Zhang, Yongchuan & Zhang, Rui & Ouyang, Shuo & Wang, Xuemin & Liao, Xiang, 2015. "Integrated optimization of hydroelectric energy in the upper and middle Yangtze River," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 481-512.
    17. Zongzhi Wang & Ailing Ye & Kelin Liu & Liting Tan, 2021. "Optimal Model of Desalination Planning Under Uncertainties in a Water Supply System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3277-3295, August.
    18. P. Guo & G. Huang & L. He & H. Zhu, 2009. "Interval-parameter Two-stage Stochastic Semi-infinite Programming: Application to Water Resources Management under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 1001-1023, March.
    19. J. Alarcón & L. Juana, 2016. "The Water Markets as Effective Tools of Managing Water Shortages in an Irrigation District," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2611-2625, June.
    20. Hao Yang & Wei He & Yu Li, 2022. "Optimization of Ecological Water Replenishment Scheme Based on the Interval Fuzzy Two-Stage Stochastic Programming Method: Boluo Lake National Nature Reserve, Jilin Province, China," IJERPH, MDPI, vol. 19(9), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:217:y:2019:i:c:p:154-164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.