IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v225y2019ics0378377418319887.html
   My bibliography  Save this article

Crop water and irrigation requirements of Jatropha curcas L. in semi-arid conditions of Botswana: applying the CROPWAT model

Author

Listed:
  • Moseki, Ofentse
  • Murray-Hudson, Michael
  • Kashe, Keotshephile

Abstract

Globally, second-generation biofuels have been promoted as an alternative fuel to fossil fuels. This shift in energy sources was envisaged to reduce dependence on fossil fuels, cut down greenhouse gas (GHG) emissions, and ultimately to relieve national economies from the ever-escalating prices of fossil fuels. Jatropha curcas L. (Jatropha) appeared to have great potential as a feedstock for biodiesel production. It attracted interest from governments and private investors in Asia and Africa, including Botswana. Despite the global promotion of Jatropha biodiesel production, there is surprisingly limited information about its water use during the cultivation stage. The aim of this study was to determine the crop water, irrigation requirements and the effects of irrigation scheduling on Jatropha cultivation in Botswana. Climate and soil data from 2014–2016 were obtained from the weather station at the Department of Agricultural Research Station, Sebele, Botswana. Secondary data sources were consulted to obtain data such as crop coefficients, crop duration length, rooting depth, and crop height. The CROPWAT model was then used to estimate the rate of reference evapotranspiration (ETo), evapotranspiration of Jatropha (ETc), irrigation water requirements (IWR) and yield response to irrigation scheduling in Botswana. The results showed that the annual ETo from 2014 to 2016 at the station was 1456 mm. The lowest monthly ETo (50.10 mm) was observed in June and the highest (182.59 mm) was observed in January. The results also indicated that the total Jatropha evapotranspiration rate (ETc) from 2014–2016 was estimated to be 955.4 mm/ growing season and the irrigation requirement was estimated to be 665.4 mm/ growing season with an irrigation efficiency of 70%, indicating that supplementary irrigation is needed. Furthermore, high yield reductions are expected in the late developmental stage if limited water is supplied. The late developmental stage requires more water than other stages. Given the low and highly variable rainfall in Botswana, satisfactory yields for biodiesel production will only be realized if irrigation is done. It is therefore recommended that shifting planting dates to coincide with rainfall should be considered and also allocating water to the most critical crop developmental stages which would help to maximise yield.

Suggested Citation

  • Moseki, Ofentse & Murray-Hudson, Michael & Kashe, Keotshephile, 2019. "Crop water and irrigation requirements of Jatropha curcas L. in semi-arid conditions of Botswana: applying the CROPWAT model," Agricultural Water Management, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:agiwat:v:225:y:2019:i:c:s0378377418319887
    DOI: 10.1016/j.agwat.2019.105754
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418319887
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105754?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mengistu Assefa Wendimu & Arne Henningsen & Tomasz Gerard Czekaj, 2017. "Incentives and moral hazard: plot level productivity of factory-operated and outgrower-operated sugarcane production in Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 48(5), pages 549-560, September.
    2. Hess, T.M. & Molatakgosi, G., 2009. "Irrigation management practices of cabbage farmers in Botswana using saline groundwater," Agricultural Water Management, Elsevier, vol. 96(2), pages 226-232, February.
    3. Gasparatos, A. & von Maltitz, G.P. & Johnson, F.X. & Lee, L. & Mathai, M. & Puppim de Oliveira, J.A. & Willis, K.J., 2015. "Biofuels in sub-Sahara Africa: Drivers, impacts and priority policy areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 879-901.
    4. Pandey, Vimal Chandra & Singh, Kripal & Singh, Jay Shankar & Kumar, Akhilesh & Singh, Bajrang & Singh, Rana P., 2012. "Jatropha curcas: A potential biofuel plant for sustainable environmental development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2870-2883.
    5. Arisoa M. Rajaona & Nele Sutterer & Folkard Asch, 2012. "Potential of Waste Water Use for Jatropha Cultivation in Arid Environments," Agriculture, MDPI, vol. 2(4), pages 1-17, December.
    6. Graham Von Maltitz & Alexandros Gasparatos & Christo Fabricius, 2014. "The Rise, Fall and Potential Resilience Benefits of Jatropha in Southern Africa," Sustainability, MDPI, vol. 6(6), pages 1-29, June.
    7. Kaushal K. Garg & Suhas P. Wani & A.V.R. Kesava Rao, 2014. "Crop coefficients of Jatropha (Jatropha curcas) and Pongamia (Pongamia pinnata) using water balance approach," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(3), pages 301-309, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parsinejad, Masoud & Raja, Omid & Chehrenegar, Behdad, 2022. "Practical analysis of remote sensing estimations of water use for major crops throughout the Urmia Lake basin," Agricultural Water Management, Elsevier, vol. 260(C).
    2. Guadalupe Pérez & Jorge M. Islas-Samperio, 2021. "Sustainability Evaluation of Non-Toxic Jatropha curcas in Rural Marginal Soil for Obtaining Biodiesel Using Life-Cycle Assessment," Energies, MDPI, vol. 14(10), pages 1-21, May.
    3. Elzaki, Raga M. & Elrasheed, Mutasim.M.M. & Elmulthum, Nagat A., 2022. "Optimal crop combination under soaring oil and energy prices in the kingdom of Saudi Arabia," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    4. Zheng Wang & Yue Huang & Tie Liu & Chanjuan Zan & Yunan Ling & Chenyu Guo, 2022. "Analysis of the Water Demand-Supply Gap and Scarcity Index in Lower Amu Darya River Basin, Central Asia," IJERPH, MDPI, vol. 19(2), pages 1-18, January.
    5. Fouad H. Saeed & Mahmoud S. Al-Khafaji & Furat A. Mahmood Al-Faraj, 2021. "Sensitivity of Irrigation Water Requirement to Climate Change in Arid and Semi-Arid Regions towards Sustainable Management of Water Resources," Sustainability, MDPI, vol. 13(24), pages 1-21, December.
    6. Thanaporn Supriyasilp & Kobkiat Pongput & Suree Boonyanupong & Teerawat Suwanlertcharoen, 2021. "Enhanced Water Management for Muang Fai Irrigation Systems through Remote Sensing and SWOT Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 263-277, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, Abubakari, 2021. "Biofuel feedstock plantations closure and land abandonment in Ghana: New directions for land studies in Sub-Saharan Africa," Land Use Policy, Elsevier, vol. 107(C).
    2. Jha, Priyanka & Schmidt, Stefan, 2021. "State of biofuel development in sub-Saharan Africa: How far sustainable?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Ahmed, Abubakari & Gasparatos, Alexandros, 2020. "Multi-dimensional energy poverty patterns around industrial crop projects in Ghana: Enhancing the energy poverty alleviation potential of rural development strategies," Energy Policy, Elsevier, vol. 137(C).
    4. Sánchez, A.S. & Almeida, M.B. & Torres, E.A. & Kalid, R.A. & Cohim, E. & Gasparatos, A., 2018. "Alternative biodiesel feedstock systems in the Semi-arid region of Brazil: Implications for ecosystem services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2744-2758.
    5. Ahmed, Abubakari & Campion, Benjamin Betey & Gasparatos, Alexandros, 2017. "Biofuel development in Ghana: policies of expansion and drivers of failure in the jatropha sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 133-149.
    6. Abubakari Ahmed & Eric Dompreh & Alexandros Gasparatos, 2019. "Human wellbeing outcomes of involvement in industrial crop production: Evidence from sugarcane, oil palm and jatropha sites in Ghana," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-33, April.
    7. Gasparatos, Alexandros & Doll, Christopher N.H. & Esteban, Miguel & Ahmed, Abubakari & Olang, Tabitha A., 2017. "Renewable energy and biodiversity: Implications for transitioning to a Green Economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 161-184.
    8. Marcin Pawel Jarzebski & Abubakari Ahmed & Yaw Agyeman Boafo & Boubacar Siddighi Balde & Linda Chinangwa & Osamu Saito & Graham Maltitz & Alexandros Gasparatos, 2020. "Food security impacts of industrial crop production in sub-Saharan Africa: a systematic review of the impact mechanisms," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(1), pages 105-135, February.
    9. Najafi, Fatemeh & Sedaghat, Ahmad & Mostafaeipour, Ali & Issakhov, Alibek, 2021. "Location assessment for producing biodiesel fuel from Jatropha Curcas in Iran," Energy, Elsevier, vol. 236(C).
    10. Portugal-Pereira, Joana & Nakatani, Jun & Kurisu, Kiyo H. & Hanaki, Keisuke, 2015. "Comparative energy and environmental analysis of Jatropha bioelectricity versus biodiesel production in remote areas," Energy, Elsevier, vol. 83(C), pages 284-293.
    11. Ahmed, Abubakari & Kuusaana, Elias Danyi & Gasparatos, Alexandros, 2018. "The role of chiefs in large-scale land acquisitions for jatropha production in Ghana: insights from agrarian political economy," Land Use Policy, Elsevier, vol. 75(C), pages 570-582.
    12. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    13. Johanna Choumert & Pascale Combes Motel & Charlain Guegang Djimeli, 2017. "The biofuel-development nexus: A meta-analysis," CERDI Working papers halshs-01512678, HAL.
    14. Richmond Antwi-Bediako & Kei Otsuki & Annelies Zoomers & Aklilu Amsalu, 2019. "Global Investment Failures and Transformations: A Review of Hyped Jatropha Spaces," Sustainability, MDPI, vol. 11(12), pages 1-23, June.
    15. Choumert Nkolo, Johanna & Combes Motel, Pascale & Guegang Djimeli, Charlain, 2018. "Income-generating Effects of Biofuel Policies: A Meta-analysis of the CGE Literature," Ecological Economics, Elsevier, vol. 147(C), pages 230-242.
    16. Jocelyn Alejandra Cortez-Núñez & María Eugenia Gutiérrez-Castillo & Violeta Y. Mena-Cervantes & Ángel Refugio Terán-Cuevas & Luis Raúl Tovar-Gálvez & Juan Velasco, 2020. "A GIS Approach Land Suitability and Availability Analysis of Jatropha Curcas L. Growth in Mexico as a Potential Source for Biodiesel Production," Energies, MDPI, vol. 13(22), pages 1-23, November.
    17. Graham von Maltitz & Marna van der Merwe, 2017. "Land and agronomic potential for biofuel production in Southern Africa," WIDER Working Paper Series 085, World Institute for Development Economic Research (UNU-WIDER).
    18. Anika Trebbin, 2021. "Land Grabbing and Jatropha in India: An Analysis of ‘Hyped’ Discourse on the Subject," Land, MDPI, vol. 10(10), pages 1-21, October.
    19. Graham von Maltitz, 2017. "Options for suitable biofuel farming: Experience from Southern Africa," WIDER Working Paper Series wp-2017-100, World Institute for Development Economic Research (UNU-WIDER).
    20. Meilin Ma & Jessie Lin & Richard J. Sexton, 2022. "The Transition from Small to Large Farms in Developing Economies: A Welfare Analysis," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 111-133, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:225:y:2019:i:c:s0378377418319887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.