IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v224y2019ic17.html
   My bibliography  Save this article

Interactive land use strategic assessment: An assessment tool for irrigation profitability under climate uncertainty

Author

Listed:
  • King, Darran A.
  • Meyer, Wayne S.
  • Connor, Jeffery D.

Abstract

The Interactive Land use Strategic Assessment (ILSA) tool allows irrigators to examine and compare the likely effects of a range uncertain future climates on their individual enterprise along multiple time frames. The scientific basis of the tool is predicated on the influence of the prevailing climate conditions on expected levels of water allocations for irrigation activities under multiple climate scenarios.

Suggested Citation

  • King, Darran A. & Meyer, Wayne S. & Connor, Jeffery D., 2019. "Interactive land use strategic assessment: An assessment tool for irrigation profitability under climate uncertainty," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
  • Handle: RePEc:eee:agiwat:v:224:y:2019:i:c:17
    DOI: 10.1016/j.agwat.2019.105751
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419310443
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105751?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vernon W. Ruttan, 2002. "Productivity Growth in World Agriculture: Sources and Constraints," Journal of Economic Perspectives, American Economic Association, vol. 16(4), pages 161-184, Fall.
    2. Marca Weinberg & Catherine L. Kling & James E. Wilen, 1993. "Water Markets and Water Quality," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(2), pages 278-291.
    3. Jeff Connor & Kurt Schwabe & Darran King & David Kaczan & Mac Kirby, 2009. "Impacts of climate change on lower Murray irrigation ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 53(3), pages 437-456, July.
    4. Chen, Yong & Marek, Gary W. & Marek, Thomas H. & Moorhead, Jerry E. & Heflin, Kevin R. & Brauer, David K. & Gowda, Prasanna H. & Srinivasan, Raghavan, 2019. "Simulating the impacts of climate change on hydrology and crop production in the Northern High Plains of Texas using an improved SWAT model," Agricultural Water Management, Elsevier, vol. 221(C), pages 13-24.
    5. Kan, Iddo & Schwabe, Kurt A. & Knapp, Keith C., 2002. "Microeconomics Of Irrigation With Saline Water," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 27(1), pages 1-24, July.
    6. Brennan, Donna C., 2006. "Water policy reform in Australia: lessons from the Victorian seasonal water market," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(3), pages 1-21, September.
    7. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    8. Nina Graveline & Pierre Mérel, 2014. "Intensive and extensive margin adjustments to water scarcity in France's Cereal Belt," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 41(5), pages 707-743.
    9. Kirby, Mac & Bark, Rosalind & Connor, Jeff & Qureshi, M. Ejaz & Keyworth, Scott, 2014. "Sustainable irrigation: How did irrigated agriculture in Australia's Murray–Darling Basin adapt in the Millennium Drought?," Agricultural Water Management, Elsevier, vol. 145(C), pages 154-162.
    10. Connor, Jeffery D. & Kandulu, John M. & Bark, Rosalind H., 2014. "Irrigation revenue loss in Murray–Darling Basin drought: An econometric assessment," Agricultural Water Management, Elsevier, vol. 145(C), pages 163-170.
    11. Rowshon, M.K. & Dlamini, N.S. & Mojid, M.A. & Adib, M.N.M. & Amin, M.S.M. & Lai, S.H., 2019. "Modeling climate-smart decision support system (CSDSS) for analyzing water demand of a large-scale rice irrigation scheme," Agricultural Water Management, Elsevier, vol. 216(C), pages 138-152.
    12. Donna Brennan, 2006. "Water policy reform in Australia: lessons from the Victorian seasonal water market ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(3), pages 403-423, September.
    13. Phogat, V. & Cox, J.W. & Šimůnek, J., 2018. "Identifying the future water and salinity risks to irrigated viticulture in the Murray-Darling Basin, South Australia," Agricultural Water Management, Elsevier, vol. 201(C), pages 107-117.
    14. Jiang, Qiang & Grafton, R. Quentin, 2012. "Economic effects of climate change in the Murray–Darling Basin, Australia," Agricultural Systems, Elsevier, vol. 110(C), pages 10-16.
    15. Connor, Jeffery D. & Schwabe, Kurt & King, Darran & Knapp, Keith, 2012. "Irrigated agriculture and climate change: The influence of water supply variability and salinity on adaptation," Ecological Economics, Elsevier, vol. 77(C), pages 149-157.
    16. Iglesias, Ana & Garrote, Luis, 2015. "Adaptation strategies for agricultural water management under climate change in Europe," Agricultural Water Management, Elsevier, vol. 155(C), pages 113-124.
    17. Julian M. Alston & Philip G. Pardey, 2014. "Agriculture in the Global Economy," Journal of Economic Perspectives, American Economic Association, vol. 28(1), pages 121-146, Winter.
    18. Nam, Won-Ho & Choi, Jin-Yong & Hong, Eun-Mi, 2015. "Irrigation vulnerability assessment on agricultural water supply risk for adaptive management of climate change in South Korea," Agricultural Water Management, Elsevier, vol. 152(C), pages 173-187.
    19. Dono, Gabriele & Cortignani, Raffaele & Doro, Luca & Giraldo, Luca & Ledda, Luigi & Pasqui, Massimiliano & Roggero, Pier Paolo, 2013. "Adapting to uncertainty associated with short-term climate variability changes in irrigated Mediterranean farming systems," Agricultural Systems, Elsevier, vol. 117(C), pages 1-12.
    20. Wang, Weiguang & Yu, Zhongbo & Zhang, Wei & Shao, Quanxi & Zhang, Yiwei & Luo, Yufeng & Jiao, Xiyun & Xu, Junzeng, 2014. "Responses of rice yield, irrigation water requirement and water use efficiency to climate change in China: Historical simulation and future projections," Agricultural Water Management, Elsevier, vol. 146(C), pages 249-261.
    21. Schwabe, Kurt A. & Connor, Jeffery D., 2012. "Drought Issues in Semi-arid and Arid Environments," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 27(3), pages 1-5.
    22. Nathaniel D. Mueller & James S. Gerber & Matt Johnston & Deepak K. Ray & Navin Ramankutty & Jonathan A. Foley, 2012. "Closing yield gaps through nutrient and water management," Nature, Nature, vol. 490(7419), pages 254-257, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Potopová, V. & Trnka, M. & Vizina, A. & Semerádová, D. & Balek, J. & Chawdhery, M.R.A. & Musiolková, M. & Pavlík, P. & Možný, M. & Štěpánek, P. & Clothier, B., 2022. "Projection of 21st century irrigation water requirements for sensitive agricultural crop commodities across the Czech Republic," Agricultural Water Management, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wheeler, Sarah Ann & Zuo, Alec & Bjornlund, Henning, 2014. "Investigating the delayed on-farm consequences of selling water entitlements in the Murray-Darling Basin," Agricultural Water Management, Elsevier, vol. 145(C), pages 72-82.
    2. Claire Settre & Jeff Connor & Sarah Ann Wheeler, 2017. "Reviewing the Treatment of Uncertainty in Hydro-economic Modeling of the Murray–Darling Basin, Australia," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-35, July.
    3. Connor, Jeffery D. & Kandulu, John M. & Bark, Rosalind H., 2014. "Irrigation revenue loss in Murray–Darling Basin drought: An econometric assessment," Agricultural Water Management, Elsevier, vol. 145(C), pages 163-170.
    4. Sarah Ann Wheeler, 2022. "Debunking Murray‐Darling Basin water trade myths," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(4), pages 797-821, October.
    5. Sapino, Francesco & Pérez-Blanco, C. Dionisio & Gutiérrez-Martín, Carlos & García-Prats, Alberto & Pulido-Velazquez, Manuel, 2022. "Influence of crop-water production functions on the expected performance of water pricing policies in irrigated agriculture," Agricultural Water Management, Elsevier, vol. 259(C).
    6. Funes, I. & Savé, R. & de Herralde, F. & Biel, C. & Pla, E. & Pascual, D. & Zabalza, J. & Cantos, G. & Borràs, G. & Vayreda, J. & Aranda, X., 2021. "Modeling impacts of climate change on the water needs and growing cycle of crops in three Mediterranean basins," Agricultural Water Management, Elsevier, vol. 249(C).
    7. Peter Warr, 2022. "Research and productivity in Indonesian agriculture," Departmental Working Papers 2022-02, The Australian National University, Arndt-Corden Department of Economics.
    8. Scheierling, Susanne M. & Treguer, David O. & Booker, James F. & Decker, Elisabeth, 2014. "How to assess agricultural water productivity ? looking for water in the agricultural productivity and efficiency literature," Policy Research Working Paper Series 6982, The World Bank.
    9. Peter Warr, 2023. "Productivity in Indonesian agriculture: Impacts of domestic and international research," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(3), pages 835-856, September.
    10. Coderoni, Silvia & Pagliacci, Francesco, 2023. "The impact of climate change on land productivity. A micro-level assessment for Italian farms," Agricultural Systems, Elsevier, vol. 205(C).
    11. Sarah Wheeler & Henning Bjornlund & Martin Shanahan & Alec Zuo, 2008. "Price elasticity of water allocations demand in the Goulburn-Murray Irrigation District ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 52(1), pages 37-55, March.
    12. Robert Brooks & Edwyna Harris & Yovina Joymungul, 2013. "Price clustering in Australian water markets," Applied Economics, Taylor & Francis Journals, vol. 45(6), pages 677-685, February.
    13. Changhai Qin & Shan Jiang & Yong Zhao & Yongnan Zhu & Qingming Wang & Lizhen Wang & Junlin Qu & Ming Wang, 2022. "Research on Water Rights Trading and Pricing Model between Agriculture and Energy Development in Ningxia, China," Sustainability, MDPI, vol. 14(23), pages 1-15, November.
    14. Zagaria, Cecilia & Schulp, Catharina J.E. & Zavalloni, Matteo & Viaggi, Davide & Verburg, Peter H., 2021. "Modelling transformational adaptation to climate change among crop farming systems in Romagna, Italy," Agricultural Systems, Elsevier, vol. 188(C).
    15. Trnka, Miroslav & Vizina, Adam & Hanel, Martin & Balek, Jan & Fischer, Milan & Hlavinka, Petr & Semerádová, Daniela & Štěpánek, Petr & Zahradníček, Pavel & Skalák, Petr & Eitzinger, Josef & Dubrovský,, 2022. "Increasing available water capacity as a factor for increasing drought resilience or potential conflict over water resources under present and future climate conditions," Agricultural Water Management, Elsevier, vol. 264(C).
    16. Lingran Yuan & Shurui Zhang & Shuo Wang & Zesen Qian & Binlei Gong, 2021. "World agricultural convergence," Journal of Productivity Analysis, Springer, vol. 55(2), pages 135-153, April.
    17. M. Ejaz Qureshi & Jeff Connor & Mac Kirby & Mohammed Mainuddin, 2007. "Economic assessment of acquiring water for environmental flows in the Murray Basin ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 51(3), pages 283-303, September.
    18. Pizarro, E. & Galleguillos, M. & Barría, P. & Callejas, R., 2022. "Irrigation management or climate change ? Which is more important to cope with water shortage in the production of table grape in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 263(C).
    19. Zhou, Li & Turvey, Calum G., 2014. "Climate change, adaptation and China's grain production," China Economic Review, Elsevier, vol. 28(C), pages 72-89.
    20. Craig D. Broadbent & David S. Brookshire & Don Coursey & Vince Tidwell, 2017. "Futures Contracts in Water Leasing: An Experimental Analysis Using Basin Characteristics of the Rio Grande, NM," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(3), pages 569-594, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:224:y:2019:i:c:17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.