IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v188y2021ics0308521x20308854.html
   My bibliography  Save this article

Modelling transformational adaptation to climate change among crop farming systems in Romagna, Italy

Author

Listed:
  • Zagaria, Cecilia
  • Schulp, Catharina J.E.
  • Zavalloni, Matteo
  • Viaggi, Davide
  • Verburg, Peter H.

Abstract

As the impact of climate change on the agricultural sector has begun to manifest itself in its severity, adaptation planning has come under scrutiny for favoring the preservation of status-quo conditions over more substantial changes. The uptake of transformational adaptations, involving a significant re-structuring of the agricultural system, is however hindered by a lack of assessment tools capable of quantifying the effects of these often more complex, far-reaching, and unprecedented changes. Agent-based models can simulate decision processes and multi-level feedbacks between system components and may therefore illustrate how transformational adaptations emerge and help identify cases where their implementation is necessary and desirable. We explore this modelling potential and aim to quantify (1) how climate change, farmer behavior and water policies may influence strategic adaptation decision-making at the farm-level, (2) the extent to which implemented adaptations represent transformations, and (3) their impact on farm structure and wider socio-ecological change. We investigate these aims through a case study of crop farming systems in the drought-prone historical region of Romagna (NE Italy), integrating insight from stakeholder interviews, local reports, spatially-explicit biophysical data and behavioral theory in the construction of an agent-based model. Results show that, on average, more than half of all implemented adaptations are transformations, thereby requiring important social and financial investments from farmers. The number of implemented transformations is highest in scenarios where drought risk perception among farmers is more widespread, notably in scenarios simulating drier climates, more adaptive behaviors and policies promoting greater water use efficiency. Under higher drought risk perception, farmers are motivated to explore a broader set of adaptations, including those outside of the trajectory determined by their farming strategy. This process particularly favors the implementation of transformational increases in farm size and irrigated area, eventually stimulating farmers to adopt an expansionist strategy. Regionally, these adaptations lead to the smallest decline in agricultural extent with fewest, yet highest profit-earning farmers, largely exacerbating presently occurring trends. Under policy scenarios simulating increased irrigation availability, fewer farmers initially experience drought and therefore perceive a drought risk. Consequently, fewer farmers undertake transformational adaptations and switch from a contractive to an expansive strategy, culminating in a relatively smaller and less profitable agricultural extent despite a larger farmer population. As transformative changes to farming strategy trigger farmers to engage in new path-dependencies, aims of water policies may therefore rebound into unintended effects, emphasizing the importance of accounting for transformational perspectives.

Suggested Citation

  • Zagaria, Cecilia & Schulp, Catharina J.E. & Zavalloni, Matteo & Viaggi, Davide & Verburg, Peter H., 2021. "Modelling transformational adaptation to climate change among crop farming systems in Romagna, Italy," Agricultural Systems, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:agisys:v:188:y:2021:i:c:s0308521x20308854
    DOI: 10.1016/j.agsy.2020.103024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X20308854
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2020.103024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guus ten Broeke & George van Voorn & Arend Ligtenberg, 2016. "Which Sensitivity Analysis Method Should I Use for My Agent-Based Model?," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(1), pages 1-5.
    2. Iglesias, Ana & Garrote, Luis, 2015. "Adaptation strategies for agricultural water management under climate change in Europe," Agricultural Water Management, Elsevier, vol. 155(C), pages 113-124.
    3. Thomas Berger & Christian Troost, 2014. "Agent-based Modelling of Climate Adaptation and Mitigation Options in Agriculture," Journal of Agricultural Economics, Wiley Blackwell, vol. 65(2), pages 323-348, June.
    4. Robert Gifford & Christine Kormos & Amanda McIntyre, 2011. "Behavioral dimensions of climate change: drivers, responses, barriers, and interventions," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 2(6), pages 801-827, November.
    5. Juhola, Sirkku & Glaas, Erik & Linnér, Björn-Ola & Neset, Tina-Simone, 2016. "Redefining maladaptation," Environmental Science & Policy, Elsevier, vol. 55(P1), pages 135-140.
    6. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    7. Roger Pielke & Gwyn Prins & Steve Rayner & Daniel Sarewitz, 2007. "Lifting the taboo on adaptation," Nature, Nature, vol. 445(7128), pages 597-598, February.
    8. Amadou, Mahamadou L. & Villamor, Grace B. & Kyei-Baffour, Nicholas, 2018. "Simulating agricultural land-use adaptation decisions to climate change: An empirical agent-based modelling in northern Ghana," Agricultural Systems, Elsevier, vol. 166(C), pages 196-209.
    9. Marshall, N.A. & Park, S. & Howden, S.M. & Dowd, A.B. & Jakku, E.S., 2013. "Climate change awareness is associated with enhanced adaptive capacity," Agricultural Systems, Elsevier, vol. 117(C), pages 30-34.
    10. An, Li, 2012. "Modeling human decisions in coupled human and natural systems: Review of agent-based models," Ecological Modelling, Elsevier, vol. 229(C), pages 25-36.
    11. Bingzhen Du & Lin Zhen & Huimin Yan & Rudolf De Groot, 2016. "Effects of Government Grassland Conservation Policy on Household Livelihoods and Dependence on Local Grasslands: Evidence from Inner Mongolia, China," Sustainability, MDPI, vol. 8(12), pages 1-18, December.
    12. Venu Kandiah & Andrew R. Binder & Emily Z. Berglund, 2017. "An Empirical Agent‐Based Model to Simulate the Adoption of Water Reuse Using the Social Amplification of Risk Framework," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 2005-2022, October.
    13. Bartolini, F. & Bazzani, G.M. & Gallerani, V. & Raggi, M. & Viaggi, D., 2007. "The impact of water and agriculture policy scenarios on irrigated farming systems in Italy: An analysis based on farm level multi-attribute linear programming models," Agricultural Systems, Elsevier, vol. 93(1-3), pages 90-114, March.
    14. Calum Brown & Peter Alexander & Sascha Holzhauer & Mark D. A. Rounsevell, 2017. "Behavioral models of climate change adaptation and mitigation in land‐based sectors," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 8(2), March.
    15. Robyn S. Wilson & Atar Herziger & Matthew Hamilton & Jeremy S. Brooks, 2020. "From incremental to transformative adaptation in individual responses to climate-exacerbated hazards," Nature Climate Change, Nature, vol. 10(3), pages 200-208, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sara Floriani Zanini, 2023. "Water challenges in socio-ecological systems: is human decision-making accounted for in the analysis of climate change adaptation options?," Working Papers 2023.06, Fondazione Eni Enrico Mattei.
    2. Zanini, Sara, 2023. "Water challenges in socio-ecological systems: is human decision-making accounted for in the analysis of climate change adaptation options?," FEEM Working Papers 333364, Fondazione Eni Enrico Mattei (FEEM).
    3. Stephen K. Dimnwobi & Kingsley I. Okere & Favour C. Onuoha & Chukwunonso Ekesiobi, 2022. "Energy Poverty, Environmental Degradation and Agricultural Productivity in Sub-Saharan Africa," Working Papers 22/096, European Xtramile Centre of African Studies (EXCAS).
    4. Stephen K. Dimnwobi & Kingsley I. Okere & Favour C. Onuoha & Chukwunonso Ekesiobi, 2022. "Energy Poverty, Environmental Degradation and Agricultural Productivity in Sub-Saharan Africa," Working Papers of the African Governance and Development Institute. 22/096, African Governance and Development Institute..
    5. Straffelini, Eugenio & Tarolli, Paolo, 2023. "Climate change-induced aridity is affecting agriculture in Northeast Italy," Agricultural Systems, Elsevier, vol. 208(C).
    6. Philippos Karipidis & Sotiria Karypidou, 2021. "Factors that Impact Farmers’ Organic Conversion Decisions," Sustainability, MDPI, vol. 13(9), pages 1-24, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    2. Robert Huber & Hang Xiong & Kevin Keller & Robert Finger, 2022. "Bridging behavioural factors and standard bio‐economic modelling in an agent‐based modelling framework," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(1), pages 35-63, February.
    3. Grace B. Villamor & Andrew Dunningham & Philip Stahlmann-Brown & Peter W. Clinton, 2022. "Improving the Representation of Climate Change Adaptation Behaviour in New Zealand’s Forest Growing Sector," Land, MDPI, vol. 11(3), pages 1-18, March.
    4. Williams, T.G. & Guikema, S.D. & Brown, D.G. & Agrawal, A., 2020. "Resilience and equity: Quantifying the distributional effects of resilience-enhancing strategies in a smallholder agricultural system," Agricultural Systems, Elsevier, vol. 182(C).
    5. Pacilly, Francine C.A. & Hofstede, Gert Jan & Lammerts van Bueren, Edith T. & Kessel, Geert J.T. & Groot, Jeroen C.J., 2018. "Simulating crop-disease interactions in agricultural landscapes to analyse the effectiveness of host resistance in disease control: The case of potato late blight," Ecological Modelling, Elsevier, vol. 378(C), pages 1-12.
    6. Huber, Robert & Bakker, Martha & Balmann, Alfons & Berger, Thomas & Bithell, Mike & Brown, Calum & Grêt-Regamey, Adrienne & Xiong, Hang & Le, Quang Bao & Mack, Gabriele & Meyfroidt, Patrick & Millingt, 2018. "Representation of decision-making in European agricultural agent-based models," Agricultural Systems, Elsevier, vol. 167(C), pages 143-160.
    7. Trnka, Miroslav & Vizina, Adam & Hanel, Martin & Balek, Jan & Fischer, Milan & Hlavinka, Petr & Semerádová, Daniela & Štěpánek, Petr & Zahradníček, Pavel & Skalák, Petr & Eitzinger, Josef & Dubrovský,, 2022. "Increasing available water capacity as a factor for increasing drought resilience or potential conflict over water resources under present and future climate conditions," Agricultural Water Management, Elsevier, vol. 264(C).
    8. Nicholas R. Magliocca, 2020. "Agent-Based Modeling for Integrating Human Behavior into the Food–Energy–Water Nexus," Land, MDPI, vol. 9(12), pages 1-25, December.
    9. Dobes Leo & Jotzo Frank & Stern David I., 2014. "The Economics of Global Climate Change: A Historical Literature Review," Review of Economics, De Gruyter, vol. 65(3), pages 281-320, December.
    10. Yuan, Shiwei & Li, Xin & Du, Erhu, 2021. "Effects of farmers’ behavioral characteristics on crop choices and responses to water management policies," Agricultural Water Management, Elsevier, vol. 247(C).
    11. Matteo Roggero & Leonhard Kähler & Achim Hagen, 2019. "Strategic cooperation for transnational adaptation: lessons from the economics of climate change mitigation," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 19(4), pages 395-410, October.
    12. Jiang, Xue & Li, Bingxin & Zhao, Hongyu & Zhang, Qiqi & Song, Xiaoya & Zhang, Haoran, 2022. "Examining the spatial simulation and land-use reorganisation mechanism of agricultural suburban settlements using a cellular-automata and agent-based model: Six settlements in China," Land Use Policy, Elsevier, vol. 120(C).
    13. Troost, Christian & Huber, Robert & Bell, Andrew R. & van Delden, Hedwig & Filatova, Tatiana & Le, Quang Bao & Lippe, Melvin & Niamir, Leila & Polhill, J. Gareth & Sun, Zhanli & Berger, Thomas, 2023. "How to keep it adequate: A protocol for ensuring validity in agent-based simulation," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 159, pages 1-21.
    14. Utomo, Dhanan Sarwo & Onggo, Bhakti Stephan & Eldridge, Stephen, 2018. "Applications of agent-based modelling and simulation in the agri-food supply chains," European Journal of Operational Research, Elsevier, vol. 269(3), pages 794-805.
    15. van Wijk, Mark T., 2014. "From global economic modelling to household level analyses of food security and sustainability: How big is the gap and can we bridge it?," Food Policy, Elsevier, vol. 49(P2), pages 378-388.
    16. Giacomo Ravaioli & Tiago Domingos & Ricardo F. M. Teixeira, 2023. "A Framework for Data-Driven Agent-Based Modelling of Agricultural Land Use," Land, MDPI, vol. 12(4), pages 1-17, March.
    17. Fraga, H. & García de Cortázar Atauri, I. & Santos, J.A, 2018. "Viticultural irrigation demands under climate change scenarios in Portugal," Agricultural Water Management, Elsevier, vol. 196(C), pages 66-74.
    18. Bazzana, Davide & Zaitchik, Benjamin & Gilioli, Gianni, 2020. "Impact of water and energy infrastructure on local well-being: an agent-based analysis of the water-energy-food nexus," Structural Change and Economic Dynamics, Elsevier, vol. 55(C), pages 165-176.
    19. Correa, Diego F. & Beyer, Hawthorne L. & Possingham, Hugh P. & Fargione, Joseph E. & Hill, Jason D. & Schenk, Peer M., 2021. "Microalgal biofuel production at national scales: Reducing conflicts with agricultural lands and biodiversity within countries," Energy, Elsevier, vol. 215(PA).
    20. Sandra Ricart & Sylvie Clarimont, 2017. "Qualifying irrigation system sustainability and governance by means of stakeholder perceptions: the Neste Canal (France)," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 33(6), pages 935-954, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:188:y:2021:i:c:s0308521x20308854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.