IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v183y2020ics0308521x19314490.html
   My bibliography  Save this article

Reducing the maize yield gap in Ethiopia: Decomposition and policy simulation

Author

Listed:
  • van Dijk, Michiel
  • Morley, Tomas
  • van Loon, Marloes
  • Reidsma, Pytrik
  • Tesfaye, Kindie
  • van Ittersum, Martin K.

Abstract

Maize is an important staple crop in Ethiopia. Reducing the yield gap - the difference between actual and (water-limited) potential yield - has wide implications for food security and policy. In this paper we combine stochastic frontier analysis of household survey data with agronomic information on (water-limited) potential yield to decompose the maize yield gap in Ethiopia and highlight policy solutions to reduce the yield gap. Our analysis suggests that lack of access to advanced technologies makes up the largest component of the maize yield gap but market imperfections, economic constraints and management constraints are also important determinants. Potentially, maize production can be increased almost fivefold if all these constraints would be addressed simultaneously and the yield gap could be fully closed. Another finding of the paper is measurement issues in the national household survey (LSMS-ISA), a key source of information for scientists to assess agricultural policies in Ethiopia and other African countries. A comparison with results from a crop model suggests a large number of unrealistic values related to key maize input and output variables. Combining economic and agronomic approaches is therefore not only useful to identify policies to reduce maize yield gaps, but also to assess and improve the quality of data-bases on which recommendations are made.

Suggested Citation

  • van Dijk, Michiel & Morley, Tomas & van Loon, Marloes & Reidsma, Pytrik & Tesfaye, Kindie & van Ittersum, Martin K., 2020. "Reducing the maize yield gap in Ethiopia: Decomposition and policy simulation," Agricultural Systems, Elsevier, vol. 183(C).
  • Handle: RePEc:eee:agisys:v:183:y:2020:i:c:s0308521x19314490
    DOI: 10.1016/j.agsy.2020.102828
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X19314490
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2020.102828?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reynolds, Travis W. & Anderson, C. Leigh & Slakie, Elysia & Gugerty, Mary Kay, 2015. "How Common Crop Yield Measures Misrepresent Productivity among Smallholder Farmers," 2015 Conference, August 9-14, 2015, Milan, Italy 212294, International Association of Agricultural Economists.
    2. Jenny C. Aker & Marcel Fafchamps, 2015. "Mobile Phone Coverage and Producer Markets: Evidence from West Africa," The World Bank Economic Review, World Bank, vol. 29(2), pages 262-292.
    3. Rosegrant, Mark W. & Koo, Jawoo & Cenacchi, Nicola & Ringler, Claudia & Robertson, Richard D. & Fisher, Myles & Cox, Cindy M. & Garrett, Karen & Perez, Nicostrato D. & Sabbagh, Pascale, 2014. "Food security in a world of natural resource scarcity: The role of agricultural technologies," IFPRI books, International Food Policy Research Institute (IFPRI), number 978-0-89629-847-7.
    4. Tsedeke Abate & Bekele Shiferaw & Abebe Menkir & Dagne Wegary & Yilma Kebede & Kindie Tesfaye & Menale Kassie & Gezahegn Bogale & Berhanu Tadesse & Tolera Keno, 2015. "Factors that transformed maize productivity in Ethiopia," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 7(5), pages 965-981, October.
    5. Pardey, Philip G. & Andrade, Robert S. & Hurley, Terrance M. & Rao, Xudong & Liebenberg, Frikkie G., 2016. "Returns to food and agricultural R&D investments in Sub-Saharan Africa, 1975–2014," Food Policy, Elsevier, vol. 65(C), pages 1-8.
    6. Dean Karlan & Robert Osei & Isaac Osei-Akoto & Christopher Udry, 2014. "Agricultural Decisions after Relaxing Credit and Risk Constraints," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 129(2), pages 597-652.
    7. Dillon, Brian & Barrett, Christopher B., 2017. "Agricultural factor markets in Sub-Saharan Africa: An updated view with formal tests for market failure," Food Policy, Elsevier, vol. 67(C), pages 64-77.
    8. Henderson, B. & Godde, C. & Medina-Hidalgo, D. & van Wijk, M. & Silvestri, S. & Douxchamps, S. & Stephenson, E. & Power, B. & Rigolot, C. & Cacho, O. & Herrero, M., 2016. "Closing system-wide yield gaps to increase food production and mitigate GHGs among mixed crop–livestock smallholders in Sub-Saharan Africa," Agricultural Systems, Elsevier, vol. 143(C), pages 106-113.
    9. Philip K. Thornton & Mario Herrero, 2015. "Adapting to climate change in the mixed crop and livestock farming systems in sub-Saharan Africa," Nature Climate Change, Nature, vol. 5(9), pages 830-836, September.
    10. Evenson, Robert E., 2001. "Economic impacts of agricultural research and extension," Handbook of Agricultural Economics, in: B. L. Gardner & G. C. Rausser (ed.), Handbook of Agricultural Economics, edition 1, volume 1, chapter 11, pages 573-628, Elsevier.
    11. Amsler, Christine & Prokhorov, Artem & Schmidt, Peter, 2016. "Endogeneity in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 190(2), pages 280-288.
    12. Ogundari, Kolawole, 2014. "The Paradigm of Agricultural Efficiency and its Implication on Food Security in Africa: What Does Meta-analysis Reveal?," World Development, Elsevier, vol. 64(C), pages 690-702.
    13. Berhane, Guush & Paulos, Zelekawork & Tafere, Kibrom & Tamru, Seneshaw, 2011. "Foodgrain consumption and calorie intake patterns in Ethiopia:," ESSP working papers 23, International Food Policy Research Institute (IFPRI).
    14. van Dijk, Michiel & Morley, Tom & Jongeneel, Roel & van Ittersum, Martin & Reidsma, Pytrik & Ruben, Ruerd, 2017. "Disentangling agronomic and economic yield gaps: An integrated framework and application," Agricultural Systems, Elsevier, vol. 154(C), pages 90-99.
    15. Reynolds, Travis W. & Anderson, C. Leigh & Slakie, Elysia & Gugerty, Mary Kay, 2015. "How Common Crop Yield Measures Misrepresent Productivity among Smallholder Farmers," 2015 Conference, August 9-14, 2015, Milan, Italy 212485, International Association of Agricultural Economists.
    16. Bart Minten & Bethlehem Koru & David Stifel, 2013. "The last mile(s) in modern input distribution: Pricing, profitability, and adoption," Agricultural Economics, International Association of Agricultural Economists, vol. 44(6), pages 629-646, November.
    17. Hurley, Terrance M. & Pardey, Philip G. & Rao, Xudong & Andrade, Robert S., 2016. "Returns to Food and Agricultural R&D Investments Worldwide, 1958-2015," Briefs 249356, University of Minnesota, International Science and Technology Practice and Policy.
    18. Beintema, Nienke M. & Stads, Gert-Jan, 2017. "A comprehensive overview of investments and human resource capacity in African agricultural research," ASTI synthesis reports 131402, International Food Policy Research Institute (IFPRI).
    19. Joseph E. Stiglitz, 1989. "Markets and Development," NBER Working Papers 2961, National Bureau of Economic Research, Inc.
    20. Sheahan, Megan & Black, Roy & Jayne, T.S., 2013. "Are Kenyan farmers under-utilizing fertilizer? Implications for input intensification strategies and research," Food Policy, Elsevier, vol. 41(C), pages 39-52.
    21. Yanyan Liu & Robert Myers, 2009. "Model selection in stochastic frontier analysis with an application to maize production in Kenya," Journal of Productivity Analysis, Springer, vol. 31(1), pages 33-46, February.
    22. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    23. William J. Burke & Thom. S. Jayne & J. Roy Black, 2017. "Factors explaining the low and variable profitability of fertilizer application to maize in Zambia," Agricultural Economics, International Association of Agricultural Economists, vol. 48(1), pages 115-126, January.
    24. Jayne, T. S. & Govereh, J. & Wanzala, M. & Demeke, M., 2003. "Fertilizer market development: a comparative analysis of Ethiopia, Kenya, and Zambia," Food Policy, Elsevier, vol. 28(4), pages 293-316, August.
    25. Colin Poulton & Andrew Dorward & Jonathan Kydd, 1998. "The revival of smallholder cash crops in Africa: public and private roles in the provision of finance," Journal of International Development, John Wiley & Sons, Ltd., vol. 10(1), pages 85-103.
    26. Rosegrant, Mark W. & Koo, Jawoo & Cenacchi, Nicola & Ringler, Claudia & Robertson, Richard D. & Fisher, Myles & Cox, Cindy M. & Garrett, Karen & Perez, Nicostrato D. & Sabbagh, Pascale, 2014. "Synopsis of Food security in a world of natural resource scarcity: The role of agricultural technologies:," Issue briefs 81, International Food Policy Research Institute (IFPRI).
    27. Tomislav Hengl & Gerard B M Heuvelink & Bas Kempen & Johan G B Leenaars & Markus G Walsh & Keith D Shepherd & Andrew Sila & Robert A MacMillan & Jorge Mendes de Jesus & Lulseged Tamene & Jérôme E Tond, 2015. "Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-26, June.
    28. Neumann, Kathleen & Verburg, Peter H. & Stehfest, Elke & Müller, Christoph, 2010. "The yield gap of global grain production: A spatial analysis," Agricultural Systems, Elsevier, vol. 103(5), pages 316-326, June.
    29. Apurba Shee & Spiro E. Stefanou, 2015. "Endogeneity Corrected Stochastic Production Frontier and Technical Efficiency," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(3), pages 939-952.
    30. Calogero Carletto & Sydney Gourlay & Paul Winters, 2015. "Editor's choice From Guesstimates to GPStimates: Land Area Measurement and Implications for Agricultural Analysis," Journal of African Economies, Centre for the Study of African Economies, vol. 24(5), pages 593-628.
    31. Davis, Kristin & Swanson, Burton & Amudavi, David & Mekonnen, Daniel Ayalew & Flohrs, Aaron & Riese, Jens & Lamb, Chloe & Zerfu, Elias, 2010. "In-depth assessment of the public agricultural extension system of Ethiopia and recommendations for improvement," IFPRI discussion papers 1041, International Food Policy Research Institute (IFPRI).
    32. Shahidur Rashid & Nigussie Tefera & Nicholas Minot & Gezahegn Ayele, 2013. "Can modern input use be promoted without subsidies? An analysis of fertilizer in Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 44(6), pages 595-611, November.
    33. Estelle Koussoubé & Céline Nauges, 2017. "Returns to fertiliser use: Does it pay enough? Some new evidence from Sub-Saharan Africa," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 44(2), pages 183-210.
    34. Jayne, T.S. & Mather, David & Mghenyi, Elliot, 2010. "Principal Challenges Confronting Smallholder Agriculture in Sub-Saharan Africa," World Development, Elsevier, vol. 38(10), pages 1384-1398, October.
    35. Stiglitz, Joseph E, 1989. "Markets, Market Failures, and Development," American Economic Review, American Economic Association, vol. 79(2), pages 197-203, May.
    36. Colin Poulton & Jonathan Kydd & Andrew Dorward, 2006. "Overcoming Market Constraints on Pro-Poor Agricultural Growth in Sub-Saharan Africa," Development Policy Review, Overseas Development Institute, vol. 24(3), pages 243-277, May.
    37. Antle, John M, 1983. "Infrastructure and Aggregate Agricultural Productivity: International Evidence," Economic Development and Cultural Change, University of Chicago Press, vol. 31(3), pages 609-619, April.
    38. Spielman, David J. & Byerlee, Derek & Alemu, Dawit & Kelemework, Dawit, 2010. "Policies to promote cereal intensification in Ethiopia: The search for appropriate public and private roles," Food Policy, Elsevier, vol. 35(3), pages 185-194, June.
    39. World Bank, 2006. "Enhancing Agricultural Innovation," World Bank Publications - Reports 24105, The World Bank Group.
    40. Kelly, Valerie & Adesina, Akinwumi A. & Gordon, Ann, 2003. "Expanding access to agricultural inputs in Africa: a review of recent market development experience," Food Policy, Elsevier, vol. 28(4), pages 379-404, August.
    41. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    42. George E. Battese, 1997. "A Note On The Estimation Of Cobb‐Douglas Production Functions When Some Explanatory Variables Have Zero Values," Journal of Agricultural Economics, Wiley Blackwell, vol. 48(1‐3), pages 250-252, January.
    43. T.S. Jayne & Shahidur Rashid, 2013. "Input subsidy programs in sub-Saharan Africa: a synthesis of recent evidence," Agricultural Economics, International Association of Agricultural Economists, vol. 44(6), pages 547-562, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Banchayehu Tessema Assefa & Jordan Chamberlin & Martin K. van Ittersum & Pytrik Reidsma, 2021. "Usage and Impacts of Technologies and Management Practices in Ethiopian Smallholder Maize Production," Agriculture, MDPI, vol. 11(10), pages 1-19, September.
    2. Danmeng Wang & Guoxi Gao & Ruolan Li & Shynggys Toktarbek & Nueryia Jiakula & Yongzhong Feng, 2022. "Limiting Factors and Environmental Adaptability for Staple Crops in Kazakhstan," Sustainability, MDPI, vol. 14(16), pages 1-15, August.
    3. Yohannes Girma & Berhanu Kuma & Amsalu Bedemo, 2023. "Risk Aversion and Perception of Farmers about Endogenous Risks: An Empirical Study for Maize Producers in Awi Zone, Amhara Region of Ethiopia," JRFM, MDPI, vol. 16(2), pages 1-29, February.
    4. Schils, René L.M. & van Voorn, George A.K. & Grassini, Patricio & van Ittersum, Martin K., 2022. "Uncertainty is more than a number or colour: Involving experts in uncertainty assessments of yield gaps," Agricultural Systems, Elsevier, vol. 195(C).
    5. Giller, Ken E. & Andersson, Jens & Delaune, Thomas & Silva, João Vasco & Descheemaeker, Katrien & van de Ven, Gerrie & Schut, Antonius G.T. & van Wijk, Mark & Hammond, Jim & Hochman, Zvi & Taulya, God, 2022. "IFAD Research Series 83: The future of farming: who will produce our food?," IFAD Research Series 322005, International Fund for Agricultural Development (IFAD).
    6. Ken E. Giller & Thomas Delaune & João Vasco Silva & Katrien Descheemaeker & Gerrie Ven & Antonius G.T. Schut & Mark Wijk & James Hammond & Zvi Hochman & Godfrey Taulya & Regis Chikowo & Sudha Narayana, 2021. "The future of farming: Who will produce our food?," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(5), pages 1073-1099, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Dijk, Michiel & Morley, Tom & Jongeneel, Roel & van Ittersum, Martin & Reidsma, Pytrik & Ruben, Ruerd, 2017. "Disentangling agronomic and economic yield gaps: An integrated framework and application," Agricultural Systems, Elsevier, vol. 154(C), pages 90-99.
    2. Kibrom A. Abay, 2020. "Measurement errors in agricultural data and their implications on marginal returns to modern agricultural inputs," Agricultural Economics, International Association of Agricultural Economists, vol. 51(3), pages 323-341, May.
    3. Holden, Stein T., 2018. "The Economics of Fertilizer Subsidies," CLTS Working Papers 9/18, Norwegian University of Life Sciences, Centre for Land Tenure Studies, revised 16 Oct 2019.
    4. Gashaw Tadesse Abate & Tanguy Bernard & Alan de Brauw & Nicholas Minot, 2018. "The impact of the use of new technologies on farmers’ wheat yield in Ethiopia: evidence from a randomized control trial," Agricultural Economics, International Association of Agricultural Economists, vol. 49(4), pages 409-421, July.
    5. Larson,Donald F. & Muraoka,Rie & Otsuka,Keijiro, 2016. "On the central role of small farms in African rural development strategies," Policy Research Working Paper Series 7710, The World Bank.
    6. Sheahan, Megan & Barrett, Christopher B., 2017. "Ten striking facts about agricultural input use in Sub-Saharan Africa," Food Policy, Elsevier, vol. 67(C), pages 12-25.
    7. Vandercasteelen, Joachim & Beyene, Seneshaw Tamru & Minten, Bart & Swinnen, Johan, 2018. "Cities and agricultural transformation in Africa: Evidence from Ethiopia," World Development, Elsevier, vol. 105(C), pages 383-399.
    8. Berazneva, Julia & Lee, David R. & Place, Frank & Jakubson, George, 2018. "Allocation and Valuation of Smallholder Maize Residues in Western Kenya," Ecological Economics, Elsevier, vol. 152(C), pages 172-182.
    9. Komarek, Adam M. & Koo, Jawoo & Wood-Sichra, Ulrike & You, Liangzhi, 2018. "Spatially-explicit effects of seed and fertilizer intensification for maize in Tanzania," Land Use Policy, Elsevier, vol. 78(C), pages 158-165.
    10. Bachewe, Fantu Nisrane & Berhane, Guush & Minten, Bart & Taffesse, Alemayehu Seyoum, 2015. "Agricultural growth in Ethiopia (2004-2014): Evidence and drivers:," ESSP working papers 81, International Food Policy Research Institute (IFPRI).
    11. Jayne, Thomas S. & Mason, Nicole M. & Burke, William J. & Ariga, Joshua, 2018. "Review: Taking stock of Africa’s second-generation agricultural input subsidy programs," Food Policy, Elsevier, vol. 75(C), pages 1-14.
    12. Kopper, Sarah A., 2018. "Agricultural labor markets and fertilizer demand: Intensification is not a single factor problem for non-separable households," 2018 Annual Meeting, August 5-7, Washington, D.C. 274184, Agricultural and Applied Economics Association.
    13. Bachewe, Fantu N. & Berhane, Guush & Minten, Bart & Taffesse, Alemayehu S., 2018. "Agricultural Transformation in Africa? Assessing the Evidence in Ethiopia," World Development, Elsevier, vol. 105(C), pages 286-298.
    14. Barrett,Christopher B. & Sheahan,Megan Britney & Barrett,Christopher B. & Sheahan,Megan Britney, 2014. "Understanding the agricultural input landscape in Sub-Saharan Africa : recent plot, household, and community-level evidence," Policy Research Working Paper Series 7014, The World Bank.
    15. Wiggins, S., 2016. "IFAD RESEARCH SERIES 1 - Agricultural and rural development reconsidered: a guide to issues and debates," IFAD Research Series 280035, International Fund for Agricultural Development (IFAD).
    16. Kibrom A. Abay & Tesfamicheal Wossen & Jordan Chamberlin, 2023. "Mismeasurement and efficiency estimates: Evidence from smallholder survey data in Africa," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(2), pages 413-434, June.
    17. Liverpool-Tasie, Lenis Saweda O. & Jayne, Thomas & Muyanga, Milu & Sanou, Awa, 2017. "Are African Farmers Experiencing Improved Incentives To Use Fertilizer?," Feed the Future Innovation Lab for Food Security Policy Research Papers 270632, Michigan State University, Department of Agricultural, Food, and Resource Economics, Feed the Future Innovation Lab for Food Security (FSP).
    18. Poulton, Colin & Dorward, Andrew & Kydd, Jonathan, 2010. "The Future of Small Farms: New Directions for Services, Institutions, and Intermediation," World Development, Elsevier, vol. 38(10), pages 1413-1428, October.
    19. Megan Sheahan & Joshua Ariga & T. S. Jayne, 2016. "Modeling the Effects of Input Market Reforms on Fertiliser Demand and Maize Production: A Case Study from Kenya," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(2), pages 420-447, June.
    20. Banchayehu Tessema Assefa & Jordan Chamberlin & Pytrik Reidsma & João Vasco Silva & Martin K. Ittersum, 2020. "Unravelling the variability and causes of smallholder maize yield gaps in Ethiopia," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(1), pages 83-103, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:183:y:2020:i:c:s0308521x19314490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.