IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v166y2018icp173-183.html
   My bibliography  Save this article

Optimization model for on-farm irrigation management of Mediterranean greenhouse crops using desalinated and saline water from different sources

Author

Listed:
  • Reca, J.
  • Trillo, C.
  • Sánchez, J.A.
  • Martínez, J.
  • Valera, D.

Abstract

Desalination is becoming a competitive alternative for supplying quality water to irrigation districts in dry areas. However, its acceptance level among farmers is often low due to its higher price, the need for additional fertilization, and the misconception that it would negatively affect yield and crop quality. This work presents a decision support system that would help them to make irrigation management decisions regarding the optimal combination of saline and desalinated seawater (DSW), which would provide maximum economic profit. The model has been specially designed for Mediterranean greenhouse cropping systems. The proposed model was validated by applying it to a real watermelon crop which was experimentally monitored. A sensitivity analysis was then conducted in order to analyze the effect of different limiting factors on the optimal combination of water and the optimal profit for farmers.

Suggested Citation

  • Reca, J. & Trillo, C. & Sánchez, J.A. & Martínez, J. & Valera, D., 2018. "Optimization model for on-farm irrigation management of Mediterranean greenhouse crops using desalinated and saline water from different sources," Agricultural Systems, Elsevier, vol. 166(C), pages 173-183.
  • Handle: RePEc:eee:agisys:v:166:y:2018:i:c:p:173-183
    DOI: 10.1016/j.agsy.2018.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X17310405
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2018.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Orgaz, F. & Fernandez, M.D. & Bonachela, S. & Gallardo, M. & Fereres, E., 2005. "Evapotranspiration of horticultural crops in an unheated plastic greenhouse," Agricultural Water Management, Elsevier, vol. 72(2), pages 81-96, March.
    2. Corwin, Dennis L. & Rhoades, James D. & Simunek, Jirka, 2007. "Leaching requirement for soil salinity control: Steady-state versus transient models," Agricultural Water Management, Elsevier, vol. 90(3), pages 165-180, June.
    3. José Sánchez & Juan Reca & Juan Martínez, 2015. "Water Productivity in a Mediterranean Semi-Arid Greenhouse District," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5395-5411, November.
    4. Mantovani, E. C. & Villalobos, F. J. & Organ, F. & Fereres, E., 1995. "Modelling the effects of sprinkler irrigation uniformity on crop yield," Agricultural Water Management, Elsevier, vol. 27(3-4), pages 243-257, July.
    5. Magán, J.J. & Gallardo, M. & Thompson, R.B. & Lorenzo, P., 2008. "Effects of salinity on fruit yield and quality of tomato grown in soil-less culture in greenhouses in Mediterranean climatic conditions," Agricultural Water Management, Elsevier, vol. 95(9), pages 1041-1055, September.
    6. Reca, Juan & Roldan, Jose & Alcaide, Miguel & Lopez, Rafael & Camacho, Emilio, 2001. "Optimisation model for water allocation in deficit irrigation systems: II. Application to the Bembezar irrigation system," Agricultural Water Management, Elsevier, vol. 48(2), pages 117-132, June.
    7. Fernandez, M.D. & Gonzalez, A.M. & Carreno, J. & Perez, C. & Bonachela, S., 2007. "Analysis of on-farm irrigation performance in Mediterranean greenhouses," Agricultural Water Management, Elsevier, vol. 89(3), pages 251-260, May.
    8. Pedro Garcia-Caparros & Juana Isabel Contreras & Rafael Baeza & Maria Luz Segura & Maria Teresa Lao, 2017. "Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    9. Nicolò Colombani & Micòl Mastrocicco & Beatrice Giambastiani, 2015. "Predicting Salinization Trends in a Lowland Coastal Aquifer: Comacchio (Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 603-618, January.
    10. Thompson, R.B. & Martinez-Gaitan, C. & Gallardo, M. & Gimenez, C. & Fernandez, M.D., 2007. "Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey," Agricultural Water Management, Elsevier, vol. 89(3), pages 261-274, May.
    11. Juan, J. A. de & Tarjuelo, J. M. & Valiente, M. & Garcia, P., 1996. "Model for optimal cropping patterns within the farm based on crop water production functions and irrigation uniformity I: Development of a decision model," Agricultural Water Management, Elsevier, vol. 31(1-2), pages 115-143, June.
    12. Juana, Luis & Rodriguez-Sinobas, Leonor & Sanchez, Raul & Losada, Alberto, 2007. "Evaluation of drip irrigation: Selection of emitters and hydraulic characterization of trapezoidal units," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 13-26, May.
    13. Reca, Juan & Roldan, Jose & Alcaide, Miguel & Lopez, Rafael & Camacho, Emilio, 2001. "Optimisation model for water allocation in deficit irrigation systems: I. Description of the model," Agricultural Water Management, Elsevier, vol. 48(2), pages 103-116, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Lichun & Ning, Songrui & Chen, Xiaoli & Li, Youli & Guo, Wenzhong & Ben-Gal, Alon, 2021. "Modeling tomato root water uptake influenced by soil salinity under drip irrigation with an inverse method," Agricultural Water Management, Elsevier, vol. 255(C).
    2. Juan Francisco Velasco-Muñoz & José Ángel Aznar-Sánchez & Belén López-Felices & Gabriella Balacco, 2022. "Adopting sustainable water management practices in agriculture based on stakeholder preferences," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 68(9), pages 317-326.
    3. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    4. M. A. Abdelzaher & Mohamed M. Awad, 2022. "Sustainable Development Goals for the Circular Economy and the Water-Food Nexus: Full Implementation of New Drip Irrigation Technologies in Upper Egypt," Sustainability, MDPI, vol. 14(21), pages 1-14, October.
    5. Gallego-Elvira, B. & Reca, J. & Martin-Gorriz, B. & Maestre-Valero, J.F. & Martínez-Alvarez, V., 2021. "Irriblend-DSW: A decision support tool for the optimal blending of desalinated and conventional irrigation waters in dry regions," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Ajay Singh, 2022. "Better Water and Land Allocation for Long-term Agricultural Sustainability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3505-3522, August.
    7. Noha H. Moghazy & Jagath J. Kaluarachchi, 2020. "Sustainable Agriculture Development in the Western Desert of Egypt: A Case Study on Crop Production, Profit, and Uncertainty in the Siwa Region," Sustainability, MDPI, vol. 12(16), pages 1-23, August.
    8. Palmate, Santosh S. & Kumar, Saurav & Poulose, Thomas & Ganjegunte, Girisha K. & Chaganti, Vijayasatya N. & Sheng, Zhuping, 2022. "Comparing the effect of different irrigation water scenarios on arid region pecan orchard using a system dynamics approach," Agricultural Water Management, Elsevier, vol. 265(C).
    9. Aein, Reza & Alizadeh, Hosein, 2021. "Integrated hydro-economic modeling for optimal design of development scheme of salinity affected irrigated agriculture in Helleh River Basin," Agricultural Water Management, Elsevier, vol. 243(C).
    10. Phogat, V. & Mallants, Dirk & Cox, J.W. & Šimůnek, J. & Oliver, D.P. & Awad, J., 2020. "Management of soil salinity associated with irrigation of protected crops," Agricultural Water Management, Elsevier, vol. 227(C).
    11. Martínez-Alvarez, V. & Gallego-Elvira, B. & Maestre-Valero, J.F. & Martin-Gorriz, B. & Soto-Garcia, M., 2020. "Assessing concerns about fertigation costs with desalinated seawater in south-eastern Spain," Agricultural Water Management, Elsevier, vol. 239(C).
    12. Elleuch, Mohamed Ali & Anane, Makram & Euchi, Jalel & Frikha, Ahmed, 2019. "Hybrid fuzzy multi-criteria decision making to solve the irrigation water allocation problem in the Tunisian case," Agricultural Systems, Elsevier, vol. 176(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bonachela, Santiago & Fernández, María Dolores & Cabrera-Corral, Francisco Javier & Granados, María Rosa, 2022. "Salt and irrigation management of soil-grown Mediterranean greenhouse tomato crops drip-irrigated with moderately saline water," Agricultural Water Management, Elsevier, vol. 262(C).
    2. Incrocci, Luca & Thompson, Rodney B. & Fernandez-Fernandez, María Dolores & De Pascale, Stefania & Pardossi, Alberto & Stanghellini, Cecilia & Rouphael, Youssef & Gallardo, Marisa, 2020. "Irrigation management of European greenhouse vegetable crops," Agricultural Water Management, Elsevier, vol. 242(C).
    3. Gallardo, M. & Thompson, R.B. & Rodríguez, J.S. & Rodríguez, F. & Fernández, M.D. & Sánchez, J.A. & Magán, J.J., 2009. "Simulation of transpiration, drainage, N uptake, nitrate leaching, and N uptake concentration in tomato grown in open substrate," Agricultural Water Management, Elsevier, vol. 96(12), pages 1773-1784, December.
    4. Yasuor, Hagai & Yermiyahu, Uri & Ben-Gal, Alon, 2020. "Consequences of irrigation and fertigation of vegetable crops with variable quality water: Israel as a case study," Agricultural Water Management, Elsevier, vol. 242(C).
    5. Soto, F. & Thompson, R.B. & Granados, M.R. & Martínez-Gaitán, C. & Gallardo, M., 2018. "Simulation of agronomic and nitrate pollution related parameters in vegetable cropping sequences in Mediterranean greenhouses using the EU-Rotate_N model," Agricultural Water Management, Elsevier, vol. 199(C), pages 175-189.
    6. José Sánchez & Juan Reca & Juan Martínez, 2015. "Water Productivity in a Mediterranean Semi-Arid Greenhouse District," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5395-5411, November.
    7. Pereira, Luis Santos & Oweis, Theib & Zairi, Abdelaziz, 2002. "Irrigation management under water scarcity," Agricultural Water Management, Elsevier, vol. 57(3), pages 175-206, December.
    8. Maroufpoor, Saman & Shiri, Jalal & Maroufpoor, Eisa, 2019. "Modeling the sprinkler water distribution uniformity by data-driven methods based on effective variables," Agricultural Water Management, Elsevier, vol. 215(C), pages 63-73.
    9. Pedro Garcia-Caparros & Juana Isabel Contreras & Rafael Baeza & Maria Luz Segura & Maria Teresa Lao, 2017. "Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    10. R. Roozbahani & B. Abbasi & S. Schreider, 2015. "Optimal allocation of water to competing stakeholders in a shared watershed," Annals of Operations Research, Springer, vol. 229(1), pages 657-676, June.
    11. Boukherroub, Tasseda & LeBel, Luc & Ruiz, Angel, 2017. "A framework for sustainable forest resource allocation: A Canadian case study," Omega, Elsevier, vol. 66(PB), pages 224-235.
    12. Gallardo, M. & Giménez, C. & Martínez-Gaitán, C. & Stöckle, C.O. & Thompson, R.B. & Granados, M.R., 2011. "Evaluation of the VegSyst model with muskmelon to simulate crop growth, nitrogen uptake and evapotranspiration," Agricultural Water Management, Elsevier, vol. 101(1), pages 107-117.
    13. R. Roozbahani & S. Schreider & B. Abbasi, 2013. "Economic Sharing of Basin Water Resources between Competing Stakeholders," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2965-2988, June.
    14. Amirhossein Hassani & Adisa Azapagic & Nima Shokri, 2021. "Global predictions of primary soil salinization under changing climate in the 21st century," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    15. Chang, Jie & Wu, Xu & Liu, Anqin & Wang, Yan & Xu, Bin & Yang, Wu & Meyerson, Laura A. & Gu, Baojing & Peng, Changhui & Ge, Ying, 2011. "Assessment of net ecosystem services of plastic greenhouse vegetable cultivation in China," Ecological Economics, Elsevier, vol. 70(4), pages 740-748, February.
    16. Karam, F. & Amacha, N. & Fahed, S. & EL Asmar, T. & Domínguez, A., 2014. "Response of potato to full and deficit irrigation under semiarid climate: Agronomic and economic implications," Agricultural Water Management, Elsevier, vol. 142(C), pages 144-151.
    17. Antonio J. Castro & María D. López-Rodríguez & Cynthia Giagnocavo & Miguel Gimenez & Leticia Céspedes & Abel La Calle & Marisa Gallardo & Pablo Pumares & Javier Cabello & Estefanía Rodríguez & David U, 2019. "Six Collective Challenges for Sustainability of Almería Greenhouse Horticulture," IJERPH, MDPI, vol. 16(21), pages 1-23, October.
    18. Bonachela, Santiago & Fernández, María Dolores & Cabrera, Francisco Javier & Granados, María Rosa, 2018. "Soil spatio-temporal distribution of water, salts and nutrients in greenhouse, drip-irrigated tomato crops using lysimetry and dielectric methods," Agricultural Water Management, Elsevier, vol. 203(C), pages 151-161.
    19. Levan Elbakidze & Brett Schiller & R. Garth Taylor, 2017. "Estimation of Short and Long Run Derived Irrigation Water Demands and Elasticities," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-22, January.
    20. Cabrera Corral, Francisco Javier & Bonachela Castaño, Santiago & Fernández Fernández, María Dolores & Granados García, María Rosa & López Hernández, Juan Carlos, 2016. "Lysimetry methods for monitoring soil solution electrical conductivity and nutrient concentration in greenhouse tomato crops," Agricultural Water Management, Elsevier, vol. 178(C), pages 171-179.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:166:y:2018:i:c:p:173-183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.