IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p13883-d953341.html
   My bibliography  Save this article

Sustainable Development Goals for the Circular Economy and the Water-Food Nexus: Full Implementation of New Drip Irrigation Technologies in Upper Egypt

Author

Listed:
  • M. A. Abdelzaher

    (Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt)

  • Mohamed M. Awad

    (Mechanical Power Engineering Department, Mansoura University, Mansoura 35516, Egypt)

Abstract

Saving fresh water is a big challenge for the next generation due to enhanced living standards and population growth. In addition, the expansion of agricultural and industrial activities is causing unmatched demands for fresh water supplies across Egypt. The Nile River is Egypt’s main water resource, representing 69.4% of the total water resources, while rainwater, torrential water and groundwater, as well as recycled agricultural and sanitary drainage water and desalinated seawater, are estimated at about 30.6%. Smart drip irrigation systems are in great demand, especially in Upper Egypt. SDG’s of the circular economy and the WEF nexus lead to full implementation of drip irrigation systems, achieving ~6.6 BM 3 /year of direct saving from fresh water and/or doubling the cultivated area. In addition to PV tubes and other utilities, renewable energy, e.g, photovoltaic panels, will posses an important role in low-energy driven drip irrigation systems, reducing fossil-uses, CO 2 emissions and devolving more sustainable processes that are less dependent on conventional energy sources. The current research work is a case study of the substitution of flood with drip irrigation, and its positive advantages for the Egyptian agricultural economy and capital expenditures (capex), which depends on the country’s infrastructure and availability of utilities.

Suggested Citation

  • M. A. Abdelzaher & Mohamed M. Awad, 2022. "Sustainable Development Goals for the Circular Economy and the Water-Food Nexus: Full Implementation of New Drip Irrigation Technologies in Upper Egypt," Sustainability, MDPI, vol. 14(21), pages 1-14, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13883-:d:953341
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/13883/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/13883/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Samar Khairy Ghanem, 2018. "The relationship between population and the environment and its impact on sustainable development in Egypt using a multi-equation model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 305-342, February.
    2. Gohar, Abdelaziz A. & Ward, Frank A., 2010. "Gains from expanded irrigation water trading in Egypt: An integrated basin approach," Ecological Economics, Elsevier, vol. 69(12), pages 2535-2548, October.
    3. Montesano, Francesco Fabiano & van Iersel, Marc W. & Boari, Francesca & Cantore, Vito & D’Amato, Giulio & Parente, Angelo, 2018. "Sensor-based irrigation management of soilless basil using a new smart irrigation system: Effects of set-point on plant physiological responses and crop performance," Agricultural Water Management, Elsevier, vol. 203(C), pages 20-29.
    4. Reca, J. & Trillo, C. & Sánchez, J.A. & Martínez, J. & Valera, D., 2018. "Optimization model for on-farm irrigation management of Mediterranean greenhouse crops using desalinated and saline water from different sources," Agricultural Systems, Elsevier, vol. 166(C), pages 173-183.
    5. Zinkernagel, Jana & Maestre-Valero, Jose. F. & Seresti, Sogol Y. & Intrigliolo, Diego S., 2020. "New technologies and practical approaches to improve irrigation management of open field vegetable crops," Agricultural Water Management, Elsevier, vol. 242(C).
    6. Marc Jeuland & Xun Wu & Dale Whittington, 2017. "Infrastructure development and the economics of cooperation in the Eastern Nile," Water International, Taylor & Francis Journals, vol. 42(2), pages 121-141, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed Basheer & Victor Nechifor & Alvaro Calzadilla & Solomon Gebrechorkos & David Pritchard & Nathan Forsythe & Jose M. Gonzalez & Justin Sheffield & Hayley J. Fowler & Julien J. Harou, 2023. "Cooperative adaptive management of the Nile River with climate and socio-economic uncertainties," Nature Climate Change, Nature, vol. 13(1), pages 48-57, January.
    2. Siddig, Khalid & Basheer, Mohammed & Luckmann, Jonas & Grethe, Harald, 2019. "Long-term economy-wide impacts of the Grand Ethiopian Renaissance Dam on Sudan," Conference papers 333118, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    3. Geiguen Shin, 2022. "How Ostrom's design principles apply to large‐scale commons: Cooperation over international river basins," Review of Policy Research, Policy Studies Organization, vol. 39(5), pages 674-697, September.
    4. Wu, Junfeng & Liu, Baohua & Chang, Samuel & Chan, Kam C., 2022. "Effects of air pollution on accounting conservatism," International Review of Financial Analysis, Elsevier, vol. 84(C).
    5. Theodora Karanisa & Yasmine Achour & Ahmed Ouammi & Sami Sayadi, 2022. "Smart greenhouses as the path towards precision agriculture in the food-energy and water nexus: case study of Qatar," Environment Systems and Decisions, Springer, vol. 42(4), pages 521-546, December.
    6. Li, Shengping & Tan, Deshui & Wu, Xueping & Degré, Aurore & Long, Huaiyu & Zhang, Shuxiang & Lu, Jinjing & Gao, Lili & Zheng, Fengjun & Liu, Xiaotong & Liang, Guopeng, 2021. "Negative pressure irrigation increases vegetable water productivity and nitrogen use efficiency by improving soil water and NO3–-N distributions," Agricultural Water Management, Elsevier, vol. 251(C).
    7. Gohar, Abdelaziz A. & Cashman, Adrian, 2016. "A methodology to assess the impact of climate variability and change on water resources, food security and economic welfare," Agricultural Systems, Elsevier, vol. 147(C), pages 51-64.
    8. Kahil, Mohamed Taher & Connor, Jeffery D. & Albiac, Jose, 2015. "Efficient water management policies for irrigation adaptation to climate change in Southern Europe," Ecological Economics, Elsevier, vol. 120(C), pages 226-233.
    9. Dina Pereira & Joao Carlos Correia Leitao & Pedro Dinis Gaspar & Cristina Fael & Isabel Falorca & Wael Khairy & Nadya Wahid & Hicham El Yousfi & Bassou Bouazzama & Jan Siering & Harald Hansmann & Jele, 2023. "Exploring Irrigation and Water Supply Technologies for Smallholder Farmers in the Mediterranean Region," Sustainability, MDPI, vol. 15(8), pages 1-25, April.
    10. Chengyu Han & Dongwen Hua & Juan Li, 2023. "A View of Industrial Agglomeration, Air Pollution and Economic Sustainability from Spatial Econometric Analysis of 273 Cities in China," Sustainability, MDPI, vol. 15(9), pages 1-16, April.
    11. Agbola, Frank W. & Evans, Nigel, 2012. "Modelling rice and cotton acreage response in the Murray Darling Basin in Australia," Agricultural Systems, Elsevier, vol. 107(C), pages 74-82.
    12. Hunjra, Ahmed Imran & Azam, Muhammad & Bruna, Maria Giuseppina & Verhoeven, Peter & Al-Faryan, Mamdouh Abdulaziz Saleh, 2022. "Sustainable development: The impact of political risk, macroeconomic policy uncertainty and ethnic conflict," International Review of Financial Analysis, Elsevier, vol. 84(C).
    13. Emmanuel Okokondem Okon, 2019. "Population structure and environmentaldegradation: Implicationfor EKC hypothesis," Bussecon Review of Social Sciences (2687-2285), Bussecon International, vol. 1(2), pages 18-26, October.
    14. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    15. Hatab, Assem Abu & Hess, Sebastian, 2021. ""Feed the Mouth, the Eye Ashamed": Have Food Prices Triggered Social Unrest in Egypt?," 2021 Conference, August 17-31, 2021, Virtual 315082, International Association of Agricultural Economists.
    16. Osman, Rehab & Ferrari, Emanuele & McDonald, Scott, 2015. "Water Quality Assessment SAM/CGE and Satellite Accounts Integrated Framework," 89th Annual Conference, April 13-15, 2015, Warwick University, Coventry, UK 204291, Agricultural Economics Society.
    17. Massa, Daniele & Magán, Juan José & Montesano, Francesco Fabiano & Tzortzakis, Nikolaos, 2020. "Minimizing water and nutrient losses from soilless cropping in southern Europe," Agricultural Water Management, Elsevier, vol. 241(C).
    18. Frank Ward & Manuel Pulido-Velazquez, 2012. "Economic Costs of Sustaining Water Supplies: Findings from the Rio Grande," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 2883-2909, August.
    19. Noha H. Moghazy & Jagath J. Kaluarachchi, 2020. "Sustainable Agriculture Development in the Western Desert of Egypt: A Case Study on Crop Production, Profit, and Uncertainty in the Siwa Region," Sustainability, MDPI, vol. 12(16), pages 1-23, August.
    20. Bwambale, Erion & Abagale, Felix K. & Anornu, Geophrey K., 2022. "Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review," Agricultural Water Management, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13883-:d:953341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.