IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i14p5395-5411.html
   My bibliography  Save this article

Water Productivity in a Mediterranean Semi-Arid Greenhouse District

Author

Listed:
  • José Sánchez
  • Juan Reca
  • Juan Martínez

Abstract

An irrigation performance analysis has been carried out in a horticultural greenhouse area located in the “Campo de Níjar” (Southern Spain) in order to assess its irrigation productivity. Irrigation water productivity indicators were calculated for a wide sample of crops over the course of two different study periods. These productivity indices were similar in average to those reported in other nearby greenhouse irrigation districts although their variability was very high. The overall productivity ratio (CYR) was 73.9 %. The low values for CYR were expected as irrigation water in this area has high salinity levels and low irrigation leaching fractions were applied. The influence of type of crop, greenhouse technology and agricultural season in the CYR values was analyzed. None of these factors had a statistically significant influence. A multivariate regression analysis was performed to model the crop yield as a function of several quantitative variables. The results showed that the most significant variable was the relative irrigation supply (RIS). Other variables that had an influence of the productivity were the length of the growing cycle in the case of tomato and the number of greenhouses per farm in the case of watermelon. Results of this work are useful as they highlight the weaknesses of the system and suggest possible measures in order to improve its productivity and sustainability. Copyright The Author(s) 2015

Suggested Citation

  • José Sánchez & Juan Reca & Juan Martínez, 2015. "Water Productivity in a Mediterranean Semi-Arid Greenhouse District," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5395-5411, November.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:14:p:5395-5411
    DOI: 10.1007/s11269-015-1125-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-015-1125-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-015-1125-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaoling Su & Jianfang Li & Vijay Singh, 2014. "Optimal Allocation of Agricultural Water Resources Based on Virtual Water Subdivision in Shiyang River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2243-2257, June.
    2. Orgaz, F. & Fernandez, M.D. & Bonachela, S. & Gallardo, M. & Fereres, E., 2005. "Evapotranspiration of horticultural crops in an unheated plastic greenhouse," Agricultural Water Management, Elsevier, vol. 72(2), pages 81-96, March.
    3. Pilar Montesinos & Emilio Camacho & Blanca Campos & Juan Rodríguez-Díaz, 2011. "Analysis of Virtual Irrigation Water. Application to Water Resources Management in a Mediterranean River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1635-1651, April.
    4. Mobin-ud Ahmad & Mac Kirby & Mohammad Islam & Md. Hossain & Md. Islam, 2014. "Groundwater Use for Irrigation and its Productivity: Status and Opportunities for Crop Intensification for Food Security in Bangladesh," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1415-1429, March.
    5. Fernandez, M.D. & Gonzalez, A.M. & Carreno, J. & Perez, C. & Bonachela, S., 2007. "Analysis of on-farm irrigation performance in Mediterranean greenhouses," Agricultural Water Management, Elsevier, vol. 89(3), pages 251-260, May.
    6. Yenesew Yihun & Abraham Haile & Bart Schultz & Teklu Erkossa, 2013. "Crop Water Productivity of Irrigated Teff in a Water Stressed Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3115-3125, June.
    7. Md Ali & K. Klein, 2014. "Water Use Efficiency and Productivity of the Irrigation Districts in Southern Alberta," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2751-2766, August.
    8. V. Pande & V. Sharda & R. Kurothe & D. Sena & S. Tiwari, 2012. "An Empirical Assessment of On-Farm Water Productivity using Groundwater in a Semi-Arid Indian Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 475-498, January.
    9. Maite Aldaya & Pedro Martínez-Santos & M. Llamas, 2010. "Incorporating the Water Footprint and Virtual Water into Policy: Reflections from the Mancha Occidental Region, Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 941-958, March.
    10. Thompson, R.B. & Martinez-Gaitan, C. & Gallardo, M. & Gimenez, C. & Fernandez, M.D., 2007. "Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey," Agricultural Water Management, Elsevier, vol. 89(3), pages 261-274, May.
    11. A. Hoekstra & A. Chapagain, 2007. "Water footprints of nations: Water use by people as a function of their consumption pattern," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 35-48, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dora Cama-Pinto & Miguel Damas & Juan Antonio Holgado-Terriza & Francisco Gómez-Mula & Alejandro Cama-Pinto, 2019. "Path Loss Determination Using Linear and Cubic Regression Inside a Classic Tomato Greenhouse," IJERPH, MDPI, vol. 16(10), pages 1-15, May.
    2. Blanca M. Plaza & Juan Reca & Juan Martínez & Francisco Alex & Maria Teresa Lao, 2019. "Sustainable Irrigation Management of Ornamental Cordyline Fruticosa “Red Edge” Plants with Saline Water," Sustainability, MDPI, vol. 11(13), pages 1-16, July.
    3. Gallego-Elvira, B. & Reca, J. & Martin-Gorriz, B. & Maestre-Valero, J.F. & Martínez-Alvarez, V., 2021. "Irriblend-DSW: A decision support tool for the optimal blending of desalinated and conventional irrigation waters in dry regions," Agricultural Water Management, Elsevier, vol. 255(C).
    4. Raeisi, Leila Goli & Morid, Saeed & Delavar, Majid & Srinivasan, Raghavan, 2019. "Effect and side-effect assessment of different agricultural water saving measures in an integrated framework," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    5. Reca, J. & Trillo, C. & Sánchez, J.A. & Martínez, J. & Valera, D., 2018. "Optimization model for on-farm irrigation management of Mediterranean greenhouse crops using desalinated and saline water from different sources," Agricultural Systems, Elsevier, vol. 166(C), pages 173-183.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bonachela, Santiago & Fernández, María Dolores & Cabrera-Corral, Francisco Javier & Granados, María Rosa, 2022. "Salt and irrigation management of soil-grown Mediterranean greenhouse tomato crops drip-irrigated with moderately saline water," Agricultural Water Management, Elsevier, vol. 262(C).
    2. P. Oel & A. Hoekstra, 2012. "Towards Quantification of the Water Footprint of Paper: A First Estimate of its Consumptive Component," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(3), pages 733-749, February.
    3. Incrocci, Luca & Thompson, Rodney B. & Fernandez-Fernandez, María Dolores & De Pascale, Stefania & Pardossi, Alberto & Stanghellini, Cecilia & Rouphael, Youssef & Gallardo, Marisa, 2020. "Irrigation management of European greenhouse vegetable crops," Agricultural Water Management, Elsevier, vol. 242(C).
    4. Soto, F. & Thompson, R.B. & Granados, M.R. & Martínez-Gaitán, C. & Gallardo, M., 2018. "Simulation of agronomic and nitrate pollution related parameters in vegetable cropping sequences in Mediterranean greenhouses using the EU-Rotate_N model," Agricultural Water Management, Elsevier, vol. 199(C), pages 175-189.
    5. Taleb Abu-Sharar & Emad Al-Karablieh & Munther Haddadin, 2012. "Role of Virtual Water in Optimizing Water Resources Management in Jordan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 3977-3993, November.
    6. Reca, J. & Trillo, C. & Sánchez, J.A. & Martínez, J. & Valera, D., 2018. "Optimization model for on-farm irrigation management of Mediterranean greenhouse crops using desalinated and saline water from different sources," Agricultural Systems, Elsevier, vol. 166(C), pages 173-183.
    7. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    8. Gallardo, M. & Giménez, C. & Martínez-Gaitán, C. & Stöckle, C.O. & Thompson, R.B. & Granados, M.R., 2011. "Evaluation of the VegSyst model with muskmelon to simulate crop growth, nitrogen uptake and evapotranspiration," Agricultural Water Management, Elsevier, vol. 101(1), pages 107-117.
    9. Gallardo, M. & Thompson, R.B. & Rodríguez, J.S. & Rodríguez, F. & Fernández, M.D. & Sánchez, J.A. & Magán, J.J., 2009. "Simulation of transpiration, drainage, N uptake, nitrate leaching, and N uptake concentration in tomato grown in open substrate," Agricultural Water Management, Elsevier, vol. 96(12), pages 1773-1784, December.
    10. Chang, Jie & Wu, Xu & Liu, Anqin & Wang, Yan & Xu, Bin & Yang, Wu & Meyerson, Laura A. & Gu, Baojing & Peng, Changhui & Ge, Ying, 2011. "Assessment of net ecosystem services of plastic greenhouse vegetable cultivation in China," Ecological Economics, Elsevier, vol. 70(4), pages 740-748, February.
    11. Yu Zhang & Qing Tian & Huan Hu & Miao Yu, 2019. "Water Footprint of Food Consumption by Chinese Residents," IJERPH, MDPI, vol. 16(20), pages 1-15, October.
    12. M. Mekonnen & A. Hoekstra & R. Becht, 2012. "Mitigating the Water Footprint of Export Cut Flowers from the Lake Naivasha Basin, Kenya," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3725-3742, October.
    13. Bonachela, Santiago & Fernández, María Dolores & Cabrera, Francisco Javier & Granados, María Rosa, 2018. "Soil spatio-temporal distribution of water, salts and nutrients in greenhouse, drip-irrigated tomato crops using lysimetry and dielectric methods," Agricultural Water Management, Elsevier, vol. 203(C), pages 151-161.
    14. Soto, F. & Gallardo, M. & Giménez, C. & Peña-Fleitas, T. & Thompson, R.B., 2014. "Simulation of tomato growth, water and N dynamics using the EU-Rotate_N model in Mediterranean greenhouses with drip irrigation and fertigation," Agricultural Water Management, Elsevier, vol. 132(C), pages 46-59.
    15. Maria J. Beltrán & Esther Velázquez, 2015. "The Political Ecology of Virtual Water in Southern Spain," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 39(5), pages 1020-1036, September.
    16. Fatemeh Karandish & Samira Salari & Abdullah Darzi-Naftchali, 2015. "Application of Virtual Water Trade to Evaluate Cropping Pattern in Arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 4061-4074, September.
    17. Thompson, R.B. & Gallardo, M. & Valdez, L.C. & Fernandez, M.D., 2007. "Determination of lower limits for irrigation management using in situ assessments of apparent crop water uptake made with volumetric soil water content sensors," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 13-28, August.
    18. S. Sun & P. Wu & Y. Wang & X. Zhao, 2013. "Temporal Variability of Water Footprint for Maize Production: The Case of Beijing from 1978 to 2008," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2447-2463, May.
    19. Gallardo, Marisa & Elia, Antonio & Thompson, Rodney B., 2020. "Decision support systems and models for aiding irrigation and nutrient management of vegetable crops," Agricultural Water Management, Elsevier, vol. 240(C).
    20. Gallardo, M. & Fernández, M.D. & Giménez, C. & Padilla, F.M. & Thompson, R.B., 2016. "Revised VegSyst model to calculate dry matter production, critical N uptake and ETc of several vegetable species grown in Mediterranean greenhouses," Agricultural Systems, Elsevier, vol. 146(C), pages 30-43.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:14:p:5395-5411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.