IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v165y2018icp177-186.html
   My bibliography  Save this article

Redesign of the traditional Mesoamerican agroecosystem based on participative ecological intensification: Evaluation of the soil and efficiency of the system

Author

Listed:
  • Reyna-Ramírez, Cristian A.
  • Rodríguez-Sánchez, Luis Manuel
  • Vela-Correa, Gilberto
  • Etchevers-Barra, Jorge
  • Fuentes-Ponce, Mariela

Abstract

Mexico is one of the countries with the highest importation levels of basic foods worldwide; it is therefore highly desirable to adopt measures to guarantee local food autonomy. Agricultural production alternatives that present an appropriate relationship with the environment are required. The objective of this study was to generate, implement and evaluate different strategies of participative ecological intensification. These strategies were focused on improving soil quality and agricultural productivity based on the traditional Mesoamerican maize-based “milpa” agrosystem. Management agrosystems were determined and implemented in conjunction with producers in an experimental community plot over a period of two years (2012 and 2013). The alternative management practices included the use of organic amendments (solid and organic) and synthetic fertilizers. Changes in soil chemical characteristics and yields (maize, beans) were measured, as well as indices of economic efficiency, labor and fertilizer use. After 2 years, the organic management treatments showed a clear increase in soil pH (from 5.02 to 5.5–5.6), in contrast to the conventional treatment in which the soil acidified (pH 4.9) and presented reduced P availability. As a result of the higher soil acidity, yields were lower compared to the systems that used organic conditioners. Soil nitrate (NO3) concentration in the year 2012 was greater in plots with chemical fertilizers and vermicompost than in the other treatments. However, in the former, there were higher losses of N through lixiviation that year (112.6 kg ha−1) and in 2013 (212.2 kg ha−1), which were related to the occurrence of high precipitation (972 mm in 2012 and 1231 mm in 2013). Yields of maize were greater in the conventional system but lower than the bean yield. In contrast, in 2013, a stormy year, the organic system (bokashi + lime) was the most resilient in terms of both maize and bean yields. The treatments of highest annual total cost in 2012 and 2013 were those that used liquid amendments, due to the increased number of working days required for fertilizer application. In contrast, the lowest cost treatments in 2012 were those with vermicompost and, in 2013, with bokashi and bokashi + lime. The conventional treatment presented the highest fertilization costs. Application of solid organic fertilizers allowed improvement of the milpa agroecosystem soil chemical characteristics in the mountain region of Guerrero. This system presented the most efficient use of resources and labor and proved to be more resilient against the impact of storms. Moreover, it produced higher bean and maize yields compared to the milpa with conventional inputs.

Suggested Citation

  • Reyna-Ramírez, Cristian A. & Rodríguez-Sánchez, Luis Manuel & Vela-Correa, Gilberto & Etchevers-Barra, Jorge & Fuentes-Ponce, Mariela, 2018. "Redesign of the traditional Mesoamerican agroecosystem based on participative ecological intensification: Evaluation of the soil and efficiency of the system," Agricultural Systems, Elsevier, vol. 165(C), pages 177-186.
  • Handle: RePEc:eee:agisys:v:165:y:2018:i:c:p:177-186
    DOI: 10.1016/j.agsy.2018.06.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X17306595
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2018.06.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dogliotti, S. & García, M.C. & Peluffo, S. & Dieste, J.P. & Pedemonte, A.J. & Bacigalupe, G.F. & Scarlato, M. & Alliaume, F. & Alvarez, J. & Chiappe, M. & Rossing, W.A.H., 2014. "Co-innovation of family farm systems: A systems approach to sustainable agriculture," Agricultural Systems, Elsevier, vol. 126(C), pages 76-86.
    2. Al-Jamal, M. Salameh & Sammis, T. W. & Jones, T., 1997. "Nitrogen and chloride concentration in deep soil cores related to fertilization," Agricultural Water Management, Elsevier, vol. 34(1), pages 1-16, July.
    3. Van Dusen, M. Eric & Taylor, J. Edward, 2005. "Missing markets and crop diversity: evidence from Mexico," Environment and Development Economics, Cambridge University Press, vol. 10(4), pages 513-531, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tesfaye, Wondimagegn & Tirivayi, Nyasha, 2020. "Crop diversity, household welfare and consumption smoothing under risk: Evidence from rural Uganda," World Development, Elsevier, vol. 125(C).
    2. Sylvain, Dernat & Bertrand, Dumont & Dominique, Vollet, 2023. "La Grange®: A generic game to reveal trade-offs and synergies among stakeholders in livestock farming areas," Agricultural Systems, Elsevier, vol. 209(C).
    3. Sharma, Parmodh & Shukla, Manoj K. & Sammis, Theodore W. & Steiner, Robert L. & Mexal, John G., 2012. "Nitrate-nitrogen leaching from three specialty crops of New Mexico under furrow irrigation system," Agricultural Water Management, Elsevier, vol. 109(C), pages 71-80.
    4. Elisa Gatto & Alba Marino & Guido Signorino, 2013. "Biodiversity and risk management in agriculture: what do we learn from CAP reforms? A farm-level analysis," ERSA conference papers ersa13p805, European Regional Science Association.
    5. Tana, PO & Maina, SW & Makini, FW & Bebe, BO, 2023. "Assessing Differential Gains That Outstanding And Average Performing Farmers Attain From Climate-Smart Cassava Innovations In Nyando Climate-Smart Villages, Kenya," African Journal of Food, Agriculture, Nutrition and Development (AJFAND), African Journal of Food, Agriculture, Nutrition and Development (AJFAND), vol. 23(3), January.
    6. Matthias Bürgi & Panna Ali & Afroza Chowdhury & Andreas Heinimann & Cornelia Hett & Felix Kienast & Manoranjan Kumar Mondal & Bishnu Raj Upreti & Peter H. Verburg, 2017. "Integrated Landscape Approach: Closing the Gap between Theory and Application," Sustainability, MDPI, vol. 9(8), pages 1-13, August.
    7. Katrin Martens & Sebastian Rogga & Jana Zscheischler & Bernd Pölling & Andreas Obersteg & Annette Piorr, 2022. "Classifying New Hybrid Cooperation Models for Short Food-Supply Chains—Providing a Concept for Assessing Sustainability Transformation in the Urban-Rural Nexus," Land, MDPI, vol. 11(4), pages 1-24, April.
    8. Di Falco, Salvatore & Bezabih, Mintewab & Yesuf, Mahmud, 2010. "Seeds for livelihood: Crop biodiversity and food production in Ethiopia," Ecological Economics, Elsevier, vol. 69(8), pages 1695-1702, June.
    9. Adelhart Toorop, Roos & Ceccarelli, Viviana & Bijarniya, Deepak & Jat, Mangi Lal & Jat, Raj Kumar & Lopez-Ridaura, Santiago & Groot, Jeroen C.J., 2020. "Using a positive deviance approach to inform farming systems redesign: A case study from Bihar, India," Agricultural Systems, Elsevier, vol. 185(C).
    10. Lacombe, Camille & Couix, Nathalie & Hazard, Laurent, 2018. "Designing agroecological farming systems with farmers: A review," Agricultural Systems, Elsevier, vol. 165(C), pages 208-220.
    11. Ruggia, A. & Dogliotti, S. & Aguerre, V. & Albicette, M.M. & Albin, A. & Blumetto, O. & Cardozo, G. & Leoni, C. & Quintans, G. & Scarlato, S. & Tittonell, P. & Rossing, W.A.H., 2021. "The application of ecologically intensive principles to the systemic redesign of livestock farms on native grasslands: A case of co-innovation in Rocha, Uruguay," Agricultural Systems, Elsevier, vol. 191(C).
    12. Kibrom A. Abay & Nathaniel D. Jensen, 2020. "Access to markets, weather risk, and livestock production decisions: Evidence from Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 51(4), pages 577-593, July.
    13. Al-Jamal, M. S. & Ball, S. & Sammis, T. W., 2001. "Comparison of sprinkler, trickle and furrow irrigation efficiencies for onion production," Agricultural Water Management, Elsevier, vol. 46(3), pages 253-266, January.
    14. Berrueta, Cecilia & Giménez, Gustavo & Dogliotti, Santiago, 2021. "Scaling up from crop to farm level: Co-innovation framework to improve vegetable farm systems sustainability," Agricultural Systems, Elsevier, vol. 189(C).
    15. Rossing, Walter A.H. & Albicette, Maria Marta & Aguerre, Veronica & Leoni, Carolina & Ruggia, Andrea & Dogliotti, Santiago, 2021. "Crafting actionable knowledge on ecological intensification: Lessons from co-innovation approaches in Uruguay and Europe," Agricultural Systems, Elsevier, vol. 190(C).
    16. Birol, Ekin & Villalba, Eric Rayn & Smale, Melinda, 2009. "Farmer preferences for milpa diversity and genetically modified maize in Mexico: a latent class approach," Environment and Development Economics, Cambridge University Press, vol. 14(4), pages 521-540, August.
    17. Vijesh Krishna & Matin Qaim & David Zilberman, 2016. "Transgenic crops, production risk and agrobiodiversity," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 43(1), pages 137-164.
    18. Anwar, Muhuddin Rajin & Liu, De Li & Farquharson, Robert & Macadam, Ian & Abadi, Amir & Finlayson, John & Wang, Bin & Ramilan, Thiagarajah, 2015. "Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia," Agricultural Systems, Elsevier, vol. 132(C), pages 133-144.
    19. Mauricio R. Bellon & Alicia Mastretta-Yanes & Alejandro Ponce-Mendoza & Daniel Ortiz-Santa María & Oswaldo Oliveros-Galindo & Hugo Perales & Francisca Acevedo & José Sarukhán, 2021. "Beyond subsistence: the aggregate contribution of campesinos to the supply and conservation of native maize across Mexico," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(1), pages 39-53, February.
    20. Juventia, Stella D. & Selin Norén, Isabella L.M. & van Apeldoorn, Dirk F. & Ditzler, Lenora & Rossing, Walter A.H., 2022. "Spatio-temporal design of strip cropping systems," Agricultural Systems, Elsevier, vol. 201(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:165:y:2018:i:c:p:177-186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.