IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v141y2015icp79-93.html
   My bibliography  Save this article

How land allocation and technology innovation affect the sustainability of agriculture in Argentina Pampas: An expanded life cycle analysis

Author

Listed:
  • Rótolo, G.C.
  • Montico, S.
  • Francis, C.A.
  • Ulgiati, S.

Abstract

Pampas region grows more than 80% of Argentina's main crops, with maize (Zea maiz L.), soybean (Glycine max L. Merr.) and wheat (Triticum aestivum L.) producing crop and landscape homogeneity that reduces biodiversity, agricultural system resilience and current and future regional welfare. With growing population and markets, there is a call for new agricultural patterns to meet increased food demand, together with concern for reducing environmental impact and improving social welfare. These challenges need rigorous approaches to measuring technological change costs and benefits as well as evaluating environmental impact of farmers' management practices. The objectives of this study are: [1] to evaluate resource use and environmental impact of current agricultural patterns in the northern part of Pampas region, [2] to contrast this with agricultural systems of previous decades, and [3] to analyze the incidence on space and time scales of the different proportions of land allocated to these three crops. Life cycle evaluations of cropping systems enlarge the scope of the analysis and help identify how problems might be solved. We utilize the SUMMA (SUstainability Multimethod Multiscale Assessment) framework for assessing the performance of integrated crop production in the northern Pampas in the years 1986–87, 1995–96, and 2009–10 based on actual land use data, compared to current systems with similar proportions of land distribution for the three crops, and to a wheat/soybean annual system. We also simulate other potential alternative land distribution scenarios. Results indicate a worsening of 9 to 12 out of 15 environmental indicators per unit of area (density of impacts), while there is an improvement per unit of product or income. The grain yield accounted in energy per hectare increased three times in relation to the year of reference (1986), while the energy demand decreased by 32%, blue water demand increased 50%. Acidification increased more than twice (7.99kgSO2eq./ha), while carbon emissions (982kgCO2eq./ha in 2009) decreased. These results provide a benchmark for further studies where new alternatives of crop distribution may prove environmentally and economically desirable choices for farmers in the Pampas.

Suggested Citation

  • Rótolo, G.C. & Montico, S. & Francis, C.A. & Ulgiati, S., 2015. "How land allocation and technology innovation affect the sustainability of agriculture in Argentina Pampas: An expanded life cycle analysis," Agricultural Systems, Elsevier, vol. 141(C), pages 79-93.
  • Handle: RePEc:eee:agisys:v:141:y:2015:i:c:p:79-93
    DOI: 10.1016/j.agsy.2015.08.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X15300172
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2015.08.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nemecek, Thomas & Dubois, David & Huguenin-Elie, Olivier & Gaillard, Gérard, 2011. "Life cycle assessment of Swiss farming systems: I. Integrated and organic farming," Agricultural Systems, Elsevier, vol. 104(3), pages 217-232, March.
    2. Martinez, Stephen W. & Hand, Michael S. & Da Pra, Michelle & Pollack, Susan L. & Ralston, Katherine L. & Smith, Travis A. & Vogel, Stephen J. & Clark, Shellye & Lohr, Luanne & Low, Sarah A. & Newman, , 2010. "Local Food Systems: Concepts, Impacts, and Issues," Economic Research Report 96635, United States Department of Agriculture, Economic Research Service.
      • Martinez, Steve & Hand, Michael & Da Pra, Michelle & Pollack, Susan & Ralston, Katherine & Smith, Travis & Vogel, Stephen & Clarke, Shellye & Lohr, Luanne & Low, Sarah & Newman, Constance, 2010. "Local food systems: concepts, impacts, and issues," MPRA Paper 24313, University Library of Munich, Germany.
    3. Ajay K. Gupta & Charles A.S. Hall, 2011. "A Review of the Past and Current State of EROI Data," Sustainability, MDPI, vol. 3(10), pages 1-14, October.
    4. Katherine Killebrew & Hendrik Wolff, 2010. "Environmental Impacts of Agricultural Technologies," Working Papers UWEC-2011-01, University of Washington, Department of Economics.
    5. Anderson, Weston & You, Liangzhi & Wood, Stanley & Wood-Sichra, Ulrike & Wu, Wenbin, 2014. "A comparative analysis of global cropping systems models and maps:," IFPRI discussion papers 1327, International Food Policy Research Institute (IFPRI).
    6. Jonathan A. Foley & Navin Ramankutty & Kate A. Brauman & Emily S. Cassidy & James S. Gerber & Matt Johnston & Nathaniel D. Mueller & Christine O’Connell & Deepak K. Ray & Paul C. West & Christian Balz, 2011. "Solutions for a cultivated planet," Nature, Nature, vol. 478(7369), pages 337-342, October.
    7. Manuel-Navarrete, David & Gallopín, Gilberto C. & Blanco, Mariela & Díaz-Zorita, Martín & Ferraro, Diego & Herzer, Hilda & Laterra, Pedro & Morello, Jorge & Murmis, María R. & Pengue, Walter & Piñeiro, 2005. "Análisis sistémico de la agriculturización en la pampa húmeda argentina y sus consecuencias en regiones extra pampeanas: sostenibilidad, brechas de conocimiento e integración de políticas," Medio Ambiente y Desarrollo 5656, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    8. Buonocore, Elvira & Franzese, Pier Paolo & Ulgiati, Sergio, 2012. "Assessing the environmental performance and sustainability of bioenergy production in Sweden: A life cycle assessment perspective," Energy, Elsevier, vol. 37(1), pages 69-78.
    9. Brown, M. T. & Herendeen, R. A., 1996. "Embodied energy analysis and EMERGY analysis: a comparative view," Ecological Economics, Elsevier, vol. 19(3), pages 219-235, December.
    10. Ferraro, Diego Omar, 2012. "Energy use in cropping systems: A regional long-term exploratory analysis of energy allocation and efficiency in the Inland Pampa (Argentina)," Energy, Elsevier, vol. 44(1), pages 490-497.
    11. Ulgiati, S. & Ascione, M. & Bargigli, S. & Cherubini, F. & Franzese, P.P. & Raugei, M. & Viglia, S. & Zucaro, A., 2011. "Material, energy and environmental performance of technological and social systems under a Life Cycle Assessment perspective," Ecological Modelling, Elsevier, vol. 222(1), pages 176-189.
    12. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    13. Nemecek, Thomas & Huguenin-Elie, Olivier & Dubois, David & Gaillard, Gérard & Schaller, Britta & Chervet, Andreas, 2011. "Life cycle assessment of Swiss farming systems: II. Extensive and intensive production," Agricultural Systems, Elsevier, vol. 104(3), pages 233-245, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Phélinas, Pascale & Choumert, Johanna, 2017. "Is GM Soybean Cultivation in Argentina Sustainable?," World Development, Elsevier, vol. 99(C), pages 452-462.
    2. Marlène GUILLON & Jacky MATHONNAT, 2017. "Is there a strategy in China’s health official development assistance to African countries?," Working Papers 201720, CERDI.
    3. Ali Akbar Barati & Hossein Azadi & Milad Dehghani Pour & Philippe Lebailly & Mostafa Qafori, 2019. "Determining Key Agricultural Strategic Factors Using AHP-MICMAC," Sustainability, MDPI, vol. 11(14), pages 1-17, July.
    4. Dariane, A.B. & Ghasemi, M. & Karami, F. & Azaranfar, A. & Hatami, S., 2021. "Crop pattern optimization in a multi-reservoir system by combining many-objective and social choice methods," Agricultural Water Management, Elsevier, vol. 257(C).
    5. Pascale PHELINAS & Sonia SCHWARTZ, 2017. "Regulating transgenic soybean production in Argentina," Working Papers 201721, CERDI.
    6. Adina-Eliza Croitoru & Titus Cristian Man & Sorin Daniel Vâtcă & Bela Kobulniczky & Vlad Stoian, 2020. "Refining the Spatial Scale for Maize Crop Agro-Climatological Suitability Conditions in a Region with Complex Topography towards a Smart and Sustainable Agriculture. Case Study: Central Romania (Cluj ," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    7. Akpoti, Komlavi & Kabo-bah, Amos T. & Zwart, Sander J., 2019. "Agricultural land suitability analysis: State-of-the-art and outlooks for integration of climate change analysis," Agricultural Systems, Elsevier, vol. 173(C), pages 172-208.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vogel, Everton & Martinelli, Gabrielli & Artuzo, Felipe Dalzotto, 2021. "Environmental and economic performance of paddy field-based crop-livestock systems in Southern Brazil," Agricultural Systems, Elsevier, vol. 190(C).
    2. Niero, Monia & Ingvordsen, Cathrine H. & Peltonen-Sainio, Pirjo & Jalli, Marja & Lyngkjær, Michael F. & Hauschild, Michael Z. & Jørgensen, Rikke B., 2015. "Eco-efficient production of spring barley in a changed climate: A Life Cycle Assessment including primary data from future climate scenarios," Agricultural Systems, Elsevier, vol. 136(C), pages 46-60.
    3. Michal Kulak & Thomas Nemecek & Emmanuel Frossard & Gérard Gaillard, 2013. "How Eco-Efficient Are Low-Input Cropping Systems in Western Europe, and What Can Be Done to Improve Their Eco-Efficiency?," Sustainability, MDPI, vol. 5(9), pages 1-22, September.
    4. Kristina J. Kaske & Silvestre García de Jalón & Adrian G. Williams & Anil R. Graves, 2021. "Assessing the Impact of Greenhouse Gas Emissions on Economic Profitability of Arable, Forestry, and Silvoarable Systems," Sustainability, MDPI, vol. 13(7), pages 1-17, March.
    5. Prechsl, Ulrich E. & Wittwer, Raphael & van der Heijden, Marcel G.A. & Lüscher, Gisela & Jeanneret, Philippe & Nemecek, Thomas, 2017. "Assessing the environmental impacts of cropping systems and cover crops: Life cycle assessment of FAST, a long-term arable farming field experiment," Agricultural Systems, Elsevier, vol. 157(C), pages 39-50.
    6. Martinelli, Gabrielli do Carmo & Schlindwein, Madalena Maria & Padovan, Milton Parron & Vogel, Everton & Ruviaro, Clandio Favarini, 2019. "Environmental performance of agroforestry systems in the Cerrado biome, Brazil," World Development, Elsevier, vol. 122(C), pages 339-348.
    7. L. Hay & A. H. B. Duffy & R. I. Whitfield, 2017. "The S‐Cycle Performance Matrix: Supporting Comprehensive Sustainability Performance Evaluation of Technical Systems," Systems Engineering, John Wiley & Sons, vol. 20(1), pages 45-70, January.
    8. Behroozeh, Samira & Hayati, Dariush & Karami, Ezatollah, 2022. "Determining and validating criteria to measure energy consumption sustainability in agricultural greenhouses," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    9. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    10. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    11. Ethan Gordon & Federico Davila & Chris Riedy, 2022. "Transforming landscapes and mindscapes through regenerative agriculture," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(2), pages 809-826, June.
    12. Thorn, Alexandra M. & Baker, Michael J. & Peters, Christian J., 2021. "Estimating biological capacity for grass-finished ruminant meat production in New England and New York," Agricultural Systems, Elsevier, vol. 189(C).
    13. Ester Foppa Pedretti & Kofi Armah Boakye-Yiadom & Elena Valentini & Alessio Ilari & Daniele Duca, 2021. "Life Cycle Assessment of Spinach Produced in Central and Southern Italy," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    14. Nemecek, Thomas & Huguenin-Elie, Olivier & Dubois, David & Gaillard, Gérard & Schaller, Britta & Chervet, Andreas, 2011. "Life cycle assessment of Swiss farming systems: II. Extensive and intensive production," Agricultural Systems, Elsevier, vol. 104(3), pages 233-245, March.
    15. Qi-Qi CHEN & Jun-Biao ZHANG & Yu HUO, 2016. "A study on research hot-spots and frontiers of agricultural science and technology innovation - visualization analysis based on the Citespace III," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 62(9), pages 429-445.
    16. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Yousefi, Marziye & Movahedi, Mehran, 2013. "Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks," Energy, Elsevier, vol. 52(C), pages 333-338.
    17. Wang, Xiaolong & Li, Zhejin & Long, Pan & Yan, Lingling & Gao, Wangsheng & Chen, Yuanquan & Sui, Peng, 2017. "Sustainability evaluation of recycling in agricultural systems by emergy accounting," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 114-124.
    18. Pradeleix, L. & Roux, P. & Bouarfa, S. & Bellon-Maurel, V., 2022. "Multilevel environmental assessment of regional farming activities with Life Cycle Assessment: Tackling data scarcity and farm diversity with Life Cycle Inventories based on Agrarian System Diagnosis," Agricultural Systems, Elsevier, vol. 196(C).
    19. Houshyar, Ehsan & Grundmann, Philipp, 2017. "Environmental impacts of energy use in wheat tillage systems: A comparative life cycle assessment (LCA) study in Iran," Energy, Elsevier, vol. 122(C), pages 11-24.
    20. Liang, Long & Lal, Rattan & Ridoutt, Bradley G. & Zhao, Guishen & Du, Zhangliu & Li, Li & Feng, Dangyang & Wang, Liyuan & Peng, Peng & Hang, Sheng & Wu, Wenliang, 2018. "Multi-indicator assessment of a water-saving agricultural engineering project in North Beijing, China," Agricultural Water Management, Elsevier, vol. 200(C), pages 34-46.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:141:y:2015:i:c:p:79-93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.