IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v110y2012icp30-40.html
   My bibliography  Save this article

Water footprinting – A comparison of methods using New Zealand dairy farming as a case study

Author

Listed:
  • Zonderland-Thomassen, M.A.
  • Ledgard, S.F.

Abstract

A case study is presented to (1) assess the water footprint of New Zealand (NZ) dairy farming in two contrasting regions of Waikato (North Island, non-irrigated moderate rainfall) and Canterbury (South Island, irrigated low rainfall), (2) illustrate differences in water footprint methods and (3) evaluate the suitability of indicators derived from each water footprint method. The water footprint methods (1) water footprint following the Water Footprint Network (WF-WFN), (2) stress-weighted water footprint (WF-Ridoutt), following Ridoutt and Pfister (2010) and Ridoutt et al. (2010), (3) environmental impacts of freshwater consumption expressed in damage to resources (ΔR), damage to ecosystem quality (ΔEQ), and damage to human health (ΔHH) following Pfister et al. (2009), and (4) freshwater ecosystem impacts (FEIs) and freshwater depletion (FD) following Milà i Canals et al. (2009, 2010) were applied to two average dairy systems in the different regions.

Suggested Citation

  • Zonderland-Thomassen, M.A. & Ledgard, S.F., 2012. "Water footprinting – A comparison of methods using New Zealand dairy farming as a case study," Agricultural Systems, Elsevier, vol. 110(C), pages 30-40.
  • Handle: RePEc:eee:agisys:v:110:y:2012:i:c:p:30-40
    DOI: 10.1016/j.agsy.2012.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X12000492
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2012.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tait, Peter R. & Cullen, Ross & Bicknell, Kathryn, 2008. "Valuing agricultural externalities in Canterbury rivers and streams," 2008 Conference, August 28-29, 2008, Nelson, New Zealand 96445, New Zealand Agricultural and Resource Economics Society.
    2. Aldaya, M.M. & Hoekstra, A.Y., 2010. "The water needed for Italians to eat pasta and pizza," Agricultural Systems, Elsevier, vol. 103(6), pages 351-360, July.
    3. Markus Berger & Matthias Finkbeiner, 2010. "Water Footprinting: How to Address Water Use in Life Cycle Assessment?," Sustainability, MDPI, vol. 2(4), pages 1-26, April.
    4. Neal, J.S. & Fulkerson, W.J. & Hacker, R.B., 2011. "Differences in water use efficiency among annual forages used by the dairy industry under optimum and deficit irrigation," Agricultural Water Management, Elsevier, vol. 98(5), pages 759-774, March.
    5. Gerbens-Leenes, P.W. & Hoekstra, A.Y. & van der Meer, Th., 2009. "The water footprint of energy from biomass: A quantitative assessment and consequences of an increasing share of bio-energy in energy supply," Ecological Economics, Elsevier, vol. 68(4), pages 1052-1060, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krauß, Michael & Kraatz, Simone & Drastig, Katrin & Prochnow, Annette, 2015. "The influence of dairy management strategies on water productivity of milk production," Agricultural Water Management, Elsevier, vol. 147(C), pages 175-186.
    2. Dourte, Daniel R. & Fraisse, Clyde W. & Uryasev, Oxana, 2014. "WaterFootprint on AgroClimate: A dynamic, web-based tool for comparing agricultural systems," Agricultural Systems, Elsevier, vol. 125(C), pages 33-41.
    3. Wu, Yu & Mullan, Katrina & Biggs, Trent & Caviglia-Harris, Jill L. & Harris, Daniel & Sills, Erin O., 2018. "Do Forests Provide Watershed Services to Local Populations in the Humid Tropics? Evidence from the Brazilian Amazon," 2018 Annual Meeting, August 5-7, Washington, D.C. 274012, Agricultural and Applied Economics Association.
    4. Toro-Mujica, Paula & Aguilar, Claudio & Vera, Raúl & Cornejo, Karen, 2016. "A simulation-based approach for evaluating the effects of farm type, management, and rainfall on the water footprint of sheep grazing systems in a semi-arid environment," Agricultural Systems, Elsevier, vol. 148(C), pages 75-85.
    5. Xiao, Guangmin & Zhao, Zichao & Liang, Long & Meng, Fanqiao & Wu, Wenliang & Guo, Yanbin, 2019. "Improving nitrogen and water use efficiency in a wheat-maize rotation system in the North China Plain using optimized farming practices," Agricultural Water Management, Elsevier, vol. 212(C), pages 172-180.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    2. Wu, Yu & Mullan, Katrina & Biggs, Trent & Caviglia-Harris, Jill L. & Harris, Daniel & Sills, Erin O., 2018. "Do Forests Provide Watershed Services to Local Populations in the Humid Tropics? Evidence from the Brazilian Amazon," 2018 Annual Meeting, August 5-7, Washington, D.C. 274012, Agricultural and Applied Economics Association.
    3. Ma, Shangyu & Yu, Zhenwen & Shi, Yu & Gao, Zhiqiang & Luo, Lanping & Chu, Pengfei & Guo, Zengjiang, 2015. "Soil water use, grain yield and water use efficiency of winter wheat in a long-term study of tillage practices and supplemental irrigation on the North China Plain," Agricultural Water Management, Elsevier, vol. 150(C), pages 9-17.
    4. Ignacio Cazcarro & Rosa Duarte & Miguel Martín-Retortillo & Vicente Pinilla & Ana Serrano, 2015. "How Sustainable is the Increase in the Water Footprint of the Spanish Agricultural Sector? A Provincial Analysis between 1955 and 2005–2010," Sustainability, MDPI, vol. 7(5), pages 1-26, April.
    5. Giorgia Giovannetti & Elisa Ticci, 2013. "Biofuel Development and Large-Scale Land Deals in Sub-Saharan Africa," Working Papers - Economics wp2013_27.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    6. Jun Nakatani & Tamon Maruyama & Kosuke Fukuchi & Yuichi Moriguchi, 2015. "A Practical Approach to Screening Potential Environmental Hotspots of Different Impact Categories in Supply Chains," Sustainability, MDPI, vol. 7(9), pages 1-15, August.
    7. Diego Bairrão & João Soares & José Almeida & John F. Franco & Zita Vale, 2023. "Green Hydrogen and Energy Transition: Current State and Prospects in Portugal," Energies, MDPI, vol. 16(1), pages 1-23, January.
    8. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    9. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    10. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    11. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
    12. Xie, Xiaomin & Jiang, Xiaoyun & Zhang, Tingting & Huang, Zhen, 2019. "Regional water footprints assessment for hydroelectricity generation in China," Renewable Energy, Elsevier, vol. 138(C), pages 316-325.
    13. Lowe, Benjamin H. & Oglethorpe, David R. & Choudhary, Sonal, 2020. "Comparing the economic value of virtual water with volumetric and stress-weighted approaches: A case for the tea supply chain," Ecological Economics, Elsevier, vol. 172(C).
    14. Zhang, Ping & Zhuo, La & Li, Meng & Liu, Yilin & Wu, Pute, 2023. "Assessment of advanced bioethanol potential under water and land resource constraints in China," Renewable Energy, Elsevier, vol. 212(C), pages 359-371.
    15. Edward S. Spang & Bret D. Stevens, 2018. "Estimating the Blue Water Footprint of In-Field Crop Losses: A Case Study of U.S. Potato Cultivation," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
    16. Okadera, Tomohiro & Geng, Yong & Fujita, Tsuyoshi & Dong, Huijuan & Liu, Zhu & Yoshida, Noboru & Kanazawa, Takaaki, 2015. "Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach," Energy Policy, Elsevier, vol. 78(C), pages 148-157.
    17. Nana, E. & Corbari, C. & Bocchiola, D., 2014. "A model for crop yield and water footprint assessment: Study of maize in the Po valley," Agricultural Systems, Elsevier, vol. 127(C), pages 139-149.
    18. Witzel, Carl-Philipp & Finger, Robert, 2016. "Economic evaluation of Miscanthus production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 681-696.
    19. Jing Zhu & Shenghong Kang & Wenwu Zhao & Qiujie Li & Xinyuan Xie & Xiangping Hu, 2020. "A Bibliometric Analysis of Food–Energy–Water Nexus: Progress and Prospects," Land, MDPI, vol. 9(12), pages 1-22, December.
    20. Mary-Jane Rogers & Alister Lawson & Kevin Kelly, 2017. "Forage Options for Dairy Farms with Reduced Water Availability in the Southern Murray Darling Basin of Australia," Sustainability, MDPI, vol. 9(12), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:110:y:2012:i:c:p:30-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.