IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v109y2012icp16-24.html
   My bibliography  Save this article

Whole-farm effects of livestock intensification in smallholder systems in Gansu, China

Author

Listed:
  • Komarek, Adam M.
  • McDonald, Cam K.
  • Bell, Lindsay W.
  • Whish, Jeremy P.M.
  • Robertson, Michael J.
  • MacLeod, Neil D.
  • Bellotti, William D.

Abstract

Simulation models can help to identify the whole-farm economic and biophysical impacts of smallholder farmers altering their farming systems. Incorporating long-term climate-induced variability in crop and livestock production enables the implications for agricultural household income and risk to be explored over a range of seasonal conditions. In this study, a simulation model is used to answer the following question: can reducing the area used for grain production by allocating more land to lucerne (Medicago sativa) and increasing livestock numbers improve total net farm income, reduce income variability and maintain grain self-sufficiency for farmers in the Qingyang Prefecture of Gansu Province, China? This was examined for three representative farm types found in the region: a low land-labour ratio farm household, a subsistence-oriented farm household, and a livestock-focused farm household.

Suggested Citation

  • Komarek, Adam M. & McDonald, Cam K. & Bell, Lindsay W. & Whish, Jeremy P.M. & Robertson, Michael J. & MacLeod, Neil D. & Bellotti, William D., 2012. "Whole-farm effects of livestock intensification in smallholder systems in Gansu, China," Agricultural Systems, Elsevier, vol. 109(C), pages 16-24.
  • Handle: RePEc:eee:agisys:v:109:y:2012:i:c:p:16-24
    DOI: 10.1016/j.agsy.2012.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X12000285
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2012.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rufino, M.C. & Dury, J. & Tittonell, P. & van Wijk, M.T. & Herrero, M. & Zingore, S. & Mapfumo, P. & Giller, K.E., 2011. "Competing use of organic resources, village-level interactions between farm types and climate variability in a communal area of NE Zimbabwe," Agricultural Systems, Elsevier, vol. 104(2), pages 175-190, February.
    2. Nigel Key & Elisabeth Sadoulet & Alain De Janvry, 2000. "Transactions Costs and Agricultural Household Supply Response," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(2), pages 245-259.
    3. Parsons, David & Nicholson, Charles F. & Blake, Robert W. & Ketterings, Quirine M. & Ramírez-Aviles, Luis & Cherney, Jerome H. & Fox, Danny G., 2011. "Application of a simulation model for assessing integration of smallholder shifting cultivation and sheep production in Yucatán, Mexico," Agricultural Systems, Elsevier, vol. 104(1), pages 13-19, January.
    4. Castelan-Ortega, Octavio A. & Fawcett, Roy H. & Arriaga-Jordan, Carlos & Herrero, Mario, 2003. "A Decision Support System for smallholder campesino maize-cattle production systems of the Toluca Valley in Central Mexico. Part I--Integrating biological and socio-economic models into a holistic sys," Agricultural Systems, Elsevier, vol. 75(1), pages 1-21, January.
    5. Castelan-Ortega, Octavio A. & Fawcett, Roy H. & Arriaga-Jordan, Carlos & Herrero, Mario, 2003. "A Decision Support System for smallholder campesino maize-cattle production systems of the Toluca Valley in Central Mexico. Part II--Emulating the farming system," Agricultural Systems, Elsevier, vol. 75(1), pages 23-46, January.
    6. Tittonell, P. & van Wijk, M.T. & Herrero, M. & Rufino, M.C. & de Ridder, N. & Giller, K.E., 2009. "Beyond resource constraints - Exploring the biophysical feasibility of options for the intensification of smallholder crop-livestock systems in Vihiga district, Kenya," Agricultural Systems, Elsevier, vol. 101(1-2), pages 1-19, June.
    7. Giller, K.E. & Tittonell, P. & Rufino, M.C. & van Wijk, M.T. & Zingore, S. & Mapfumo, P. & Adjei-Nsiah, S. & Herrero, M. & Chikowo, R. & Corbeels, M. & Rowe, E.C. & Baijukya, F. & Mwijage, A. & Smith,, 2011. "Communicating complexity: Integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development," Agricultural Systems, Elsevier, vol. 104(2), pages 191-203, February.
    8. Staal, S. J. & Baltenweck, I. & Waithaka, M. M. & deWolff, T. & Njoroge, L., 2002. "Location and uptake: integrated household and GIS analysis of technology adoption and land use, with application to smallholder dairy farms in Kenya," Agricultural Economics, Blackwell, vol. 27(3), pages 295-315, November.
    9. Waithaka, M.M. & Thornton, P.K. & Herrero, M. & Shepherd, K.D., 2006. "Bio-economic evaluation of farmers' perceptions of viable farms in western Kenya," Agricultural Systems, Elsevier, vol. 90(1-3), pages 243-271, October.
    10. Tittonell, P. & Muriuki, A. & Shepherd, K.D. & Mugendi, D. & Kaizzi, K.C. & Okeyo, J. & Verchot, L. & Coe, R. & Vanlauwe, B., 2010. "The diversity of rural livelihoods and their influence on soil fertility in agricultural systems of East Africa - A typology of smallholder farms," Agricultural Systems, Elsevier, vol. 103(2), pages 83-97, February.
    11. Henk A. J. Moll, 2005. "Costs and benefits of livestock systems and the role of market and nonmarket relationships," Agricultural Economics, International Association of Agricultural Economists, vol. 32(2), pages 181-193, March.
    12. Yin, Runsheng & Zhao, Minjuan, 2012. "Ecological restoration programs and payments for ecosystem services as integrated biophysical and socioeconomic processes—China's experience as an example," Ecological Economics, Elsevier, vol. 73(C), pages 56-65.
    13. Komarek, Adam M. & Waldron, Scott A. & Brown, Colin G., 2012. "An exploration of livestock-development policies in western China," Food Policy, Elsevier, vol. 37(1), pages 12-20.
    14. Louhichi, Kamel & Kanellopoulos, Argyris & Janssen, Sander & Flichman, Guillermo & Blanco, Maria & Hengsdijk, Huib & Heckelei, Thomas & Berentsen, Paul & Lansink, Alfons Oude & Ittersum, Martin Van, 2010. "FSSIM, a bio-economic farm model for simulating the response of EU farming systems to agricultural and environmental policies," Agricultural Systems, Elsevier, vol. 103(8), pages 585-597, October.
    15. Thornton, P. K. & Herrero, M., 2001. "Integrated crop-livestock simulation models for scenario analysis and impact assessment," Agricultural Systems, Elsevier, vol. 70(2-3), pages 581-602.
    16. Lisson, Shaun & MacLeod, Neil & McDonald, Cam & Corfield, Jeff & Pengelly, Bruce & Wirajaswadi, Lalu & Rahman, Rahmat & Bahar, Syamsu & Padjung, Rusnadi & Razak, Nasruddin & Puspadi, Ketut & Dahlanudd, 2010. "A participatory, farming systems approach to improving Bali cattle production in the smallholder crop-livestock systems of Eastern Indonesia," Agricultural Systems, Elsevier, vol. 103(7), pages 486-497, September.
    17. Solano, C. & Leon, H. & Perez, E. & Herrero, M., 2001. "Characterising objective profiles of Costa Rican dairy farmers," Agricultural Systems, Elsevier, vol. 67(3), pages 153-179, March.
    18. Qu, Futian & Kuyvenhoven, Arie & Shi, Xiaoping & Heerink, Nico, 2011. "Sustainable natural resource use in rural China: Recent trends and policies," China Economic Review, Elsevier, vol. 22(4), pages 444-460.
    19. Giller, Ken E. & Rowe, Ed C. & de Ridder, Nico & van Keulen, Herman, 2006. "Resource use dynamics and interactions in the tropics: Scaling up in space and time," Agricultural Systems, Elsevier, vol. 88(1), pages 8-27, April.
    20. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    21. Herrero, M. & Gonzalez-Estrada, E. & Thornton, P.K. & Quiros, C. & Waithaka, M.M. & Ruiz, R. & Hoogenboom, G., 2007. "IMPACT: Generic household-level databases and diagnostics tools for integrated crop-livestock systems analysis," Agricultural Systems, Elsevier, vol. 92(1-3), pages 240-265, January.
    22. Johannes Woelcke, 2006. "Technological and policy options for sustainable agricultural intensification in eastern Uganda," Agricultural Economics, International Association of Agricultural Economists, vol. 34(2), pages 129-139, March.
    23. Herrero, M. & Fawcett, R. H. & Dent, J. B., 1999. "Bio-economic evaluation of dairy farm management scenarios using integrated simulation and multiple-criteria models," Agricultural Systems, Elsevier, vol. 62(3), pages 169-188, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Epper, C.A. & Paul, B. & Burra, D. & Phengsavanh, P. & Ritzema, R. & Syfongxay, C. & Groot, J.C.J. & Six, J. & Frossard, E. & Oberson, A. & Douxchamps, S., 2020. "Nutrient flows and intensification options for smallholder farmers of the Lao uplands," Agricultural Systems, Elsevier, vol. 177(C).
    2. Adam M. Komarek, 2018. "Conservation agriculture in western China increases productivity and profits without decreasing resilience," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(5), pages 1251-1262, October.
    3. Komarek, Adam M. & Bell, Lindsay W. & Whish, Jeremy P.M. & Robertson, Michael J. & Bellotti, William D., 2015. "Whole-farm economic, risk and resource-use trade-offs associated with integrating forages into crop–livestock systems in western China," Agricultural Systems, Elsevier, vol. 133(C), pages 63-72.
    4. Paul, B.K. & Epper, C.A. & Tschopp, D.J. & Long, C.T.M. & Tungani, V. & Burra, D. & Hok, L. & Phengsavanh, P. & Douxchamps, S., 2022. "Crop-livestock integration provides opportunities to mitigate environmental trade-offs in transitioning smallholder agricultural systems of the Greater Mekong Subregion," Agricultural Systems, Elsevier, vol. 195(C).
    5. McDonald, C.K. & MacLeod, N.D. & Lisson, S. & Corfield, J.P., 2019. "The Integrated Analysis Tool (IAT) – A model for the evaluation of crop-livestock and socio-economic interventions in smallholder farming systems," Agricultural Systems, Elsevier, vol. 176(C).
    6. Komarek, Adam M. & Li, LingLing & Bellotti, William D., 2015. "Whole-farm economic and risk effects of conservation agriculture in a crop-livestock system in western China," Agricultural Systems, Elsevier, vol. 137(C), pages 220-226.
    7. Zheng, Chaohui & Liu, Yi & Bluemling, Bettina & Chen, Jining & Mol, Arthur P.J., 2013. "Modeling the environmental behavior and performance of livestock farmers in China: An ABM approach," Agricultural Systems, Elsevier, vol. 122(C), pages 60-72.
    8. Zuo, Alec & Hou, Lingling & Huang, Zeying, 2020. "How does farmers' current usage of crop straws influence the willingness-to-accept price to sell?," Energy Economics, Elsevier, vol. 86(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Le Gal, P.-Y. & Dugué, P. & Faure, G. & Novak, S., 2011. "How does research address the design of innovative agricultural production systems at the farm level? A review," Agricultural Systems, Elsevier, vol. 104(9), pages 714-728.
    2. Tittonell, P. & van Wijk, M.T. & Rufino, M.C. & Vrugt, J.A. & Giller, K.E., 2007. "Analysing trade-offs in resource and labour allocation by smallholder farmers using inverse modelling techniques: A case-study from Kakamega district, western Kenya," Agricultural Systems, Elsevier, vol. 95(1-3), pages 76-95, December.
    3. Giller, K.E. & Tittonell, P. & Rufino, M.C. & van Wijk, M.T. & Zingore, S. & Mapfumo, P. & Adjei-Nsiah, S. & Herrero, M. & Chikowo, R. & Corbeels, M. & Rowe, E.C. & Baijukya, F. & Mwijage, A. & Smith,, 2011. "Communicating complexity: Integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development," Agricultural Systems, Elsevier, vol. 104(2), pages 191-203, February.
    4. Zingore, S. & González-Estrada, E. & Delve, R.J. & Herrero, M. & Dimes, J.P. & Giller, K.E., 2009. "An integrated evaluation of strategies for enhancing productivity and profitability of resource-constrained smallholder farms in Zimbabwe," Agricultural Systems, Elsevier, vol. 101(1-2), pages 57-68, June.
    5. McDonald, C.K. & MacLeod, N.D. & Lisson, S. & Corfield, J.P., 2019. "The Integrated Analysis Tool (IAT) – A model for the evaluation of crop-livestock and socio-economic interventions in smallholder farming systems," Agricultural Systems, Elsevier, vol. 176(C).
    6. Komarek, Adam M. & Bell, Lindsay W. & Whish, Jeremy P.M. & Robertson, Michael J. & Bellotti, William D., 2015. "Whole-farm economic, risk and resource-use trade-offs associated with integrating forages into crop–livestock systems in western China," Agricultural Systems, Elsevier, vol. 133(C), pages 63-72.
    7. van Wijk, Mark T. & Tittonell, Pablo & Rufino, Mariana C. & Herrero, Mario & Pacini, Cesare & Ridder, Nico de & Giller, Ken E., 2009. "Identifying key entry-points for strategic management of smallholder farming systems in sub-Saharan Africa using the dynamic farm-scale simulation model NUANCES-FARMSIM," Agricultural Systems, Elsevier, vol. 102(1-3), pages 89-101, October.
    8. Tittonell, P. & van Wijk, M.T. & Herrero, M. & Rufino, M.C. & de Ridder, N. & Giller, K.E., 2009. "Beyond resource constraints - Exploring the biophysical feasibility of options for the intensification of smallholder crop-livestock systems in Vihiga district, Kenya," Agricultural Systems, Elsevier, vol. 101(1-2), pages 1-19, June.
    9. Herrero, M. & Gonzalez-Estrada, E. & Thornton, P.K. & Quiros, C. & Waithaka, M.M. & Ruiz, R. & Hoogenboom, G., 2007. "IMPACT: Generic household-level databases and diagnostics tools for integrated crop-livestock systems analysis," Agricultural Systems, Elsevier, vol. 92(1-3), pages 240-265, January.
    10. González-Estrada, Ernesto & Rodriguez, Luis C. & Walen, Valerie K. & Naab, Jesse B. & Koo, Jawoo & Jones, James W. & Herrero, Mario & Thornton, Philip K., 2008. "Carbon sequestration and farm income in West Africa: Identifying best management practices for smallholder agricultural systems in northern Ghana," Ecological Economics, Elsevier, vol. 67(3), pages 492-502, October.
    11. Parsons, David & Nicholson, Charles F. & Blake, Robert W. & Ketterings, Quirine M. & Ramírez-Aviles, Luis & Fox, Danny G. & Tedeschi, Luis O. & Cherney, Jerome H., 2011. "Development and evaluation of an integrated simulation model for assessing smallholder crop-livestock production in Yucatán, Mexico," Agricultural Systems, Elsevier, vol. 104(1), pages 1-12, January.
    12. Ditzler, Lenora & Komarek, Adam M. & Chiang, Tsai-Wei & Alvarez, Stéphanie & Chatterjee, Shantonu Abe & Timler, Carl & Raneri, Jessica E. & Carmona, Natalia Estrada & Kennedy, Gina & Groot, Jeroen C.J, 2019. "A model to examine farm household trade-offs and synergies with an application to smallholders in Vietnam," Agricultural Systems, Elsevier, vol. 173(C), pages 49-63.
    13. Valbuena, Diego & Tui, Sabine Homann-Kee & Erenstein, Olaf & Teufel, Nils & Duncan, Alan & Abdoulaye, Tahirou & Swain, Braja & Mekonnen, Kindu & Germaine, Ibro & Gérard, Bruno, 2015. "Identifying determinants, pressures and trade-offs of crop residue use in mixed smallholder farms in Sub-Saharan Africa and South Asia," Agricultural Systems, Elsevier, vol. 134(C), pages 107-118.
    14. Waithaka, M.M. & Thornton, P.K. & Herrero, M. & Shepherd, K.D., 2006. "Bio-economic evaluation of farmers' perceptions of viable farms in western Kenya," Agricultural Systems, Elsevier, vol. 90(1-3), pages 243-271, October.
    15. Adelhart Toorop, Roos & Ceccarelli, Viviana & Bijarniya, Deepak & Jat, Mangi Lal & Jat, Raj Kumar & Lopez-Ridaura, Santiago & Groot, Jeroen C.J., 2020. "Using a positive deviance approach to inform farming systems redesign: A case study from Bihar, India," Agricultural Systems, Elsevier, vol. 185(C).
    16. Sterk, B. & van Ittersum, M.K. & Leeuwis, C. & Rossing, W.A.H. & van Keulen, H. & van de Ven, G.W.J., 2006. "Finding niches for whole-farm design models - contradictio in terminis?," Agricultural Systems, Elsevier, vol. 87(2), pages 211-228, February.
    17. Jindo, Keiji & Schut, Antonius G.T. & Langeveld, Johannes W.A., 2020. "Sustainable intensification in Western Kenya: Who will benefit?," Agricultural Systems, Elsevier, vol. 182(C).
    18. Berkhout, E.D. & Schipper, R.A. & Van Keulen, H. & Coulibaly, O., 2011. "Heterogeneity in farmers' production decisions and its impact on soil nutrient use: Results and implications from northern Nigeria," Agricultural Systems, Elsevier, vol. 104(1), pages 63-74, January.
    19. Ramilan, T. & Kumar, S. & Haileslassie, Amare & Craufurd, P. & Scrimgeour, F. & Kattarkandi, B. & Whitbread, A., 2022. "Quantifying farm household resilience and the implications of livelihood heterogeneity in the semi-arid tropics of India," Papers published in Journals (Open Access), International Water Management Institute, pages 1-12(4):466.
    20. R. S. Ritzema & R. Frelat & S. Douxchamps & S. Silvestri & M. C. Rufino & M. Herrero & K. E. Giller & S. López-Ridaura & N. Teufel & B. K. Paul & M. T. Wijk, 2017. "Is production intensification likely to make farm households food-adequate? A simple food availability analysis across smallholder farming systems from East and West Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(1), pages 115-131, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:109:y:2012:i:c:p:16-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.