IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v104y2011i2p175-190.html
   My bibliography  Save this article

Competing use of organic resources, village-level interactions between farm types and climate variability in a communal area of NE Zimbabwe

Author

Listed:
  • Rufino, M.C.
  • Dury, J.
  • Tittonell, P.
  • van Wijk, M.T.
  • Herrero, M.
  • Zingore, S.
  • Mapfumo, P.
  • Giller, K.E.

Abstract

In communal areas of NE Zimbabwe, feed resources are collectively managed, with herds grazing on grasslands during the rainy season and mainly on crop residues during the dry season, which creates interactions between farmers and competition for organic resources. Addition of crop residues or animal manure is needed to sustain agricultural production on inherently poor soils. Objectives of this study were to assess the effect of village-level interactions on carbon and nutrient flows, and to explore their impact on the long-term productivity of different farm types under climate variability. Crop and cattle management data collected in Murewa Communal area, NE Zimbabwe was used together with a dynamic farm-scale simulation model (NUANCES-FARMSIM) to simulate village-level interactions. Simulations showed that grasslands support most cattle feed intake (c. 75%), and that crop residues produced by non-cattle farmers sustain about 30% of the dry season feed intake. Removal of crop residues (0.3-0.4 t C ha-1 yr-1) from fields of non-cattle farmers resulted in a long-term decrease in crop yields. No-access to crop residues of non-cattle farmers increased soil C modestly and improved yields in the long-term, but not enough to meet household energy requirements. Harvest of grain and removal of most crop residues by grazing cattle caused a long-term decline in soil C stocks for all farm types. The smallest decrease (-0.5 t C ha-1) was observed for most fertile fields of cattle farmers, who manure their fields. Cattle farmers needed to access 4-10 ha of grassland to apply 3 t of manure ha-1 yr-1. Rainfall variability intensifies crop-livestock interactions increasing competition for biomass to feed livestock (short-term effect) or to rehabilitate soils (long-term effect). Prolonged dry seasons and low availability of crop residues may lead to cattle losses, with negative impact in turn on availability of draught power, affecting area under cultivation in consecutive seasons until farmers re-stock. Increasing mineral fertiliser use concurrently with keeping crop residues in fertile fields and allocating manure to poor fields appears to be a promising strategy to boost crop and cattle productivity at village level. The likelihood of this scenario being implemented depends on availability of fertilisers and decision of farmers to invest in rehabilitating soils to obtain benefits in the long-term. Adaptation options cannot be blind to what occurs beyond field and farm level, because otherwise recommendations from research and development do not fit the local conditions and farmers tend to ignore them.

Suggested Citation

  • Rufino, M.C. & Dury, J. & Tittonell, P. & van Wijk, M.T. & Herrero, M. & Zingore, S. & Mapfumo, P. & Giller, K.E., 2011. "Competing use of organic resources, village-level interactions between farm types and climate variability in a communal area of NE Zimbabwe," Agricultural Systems, Elsevier, vol. 104(2), pages 175-190, February.
  • Handle: RePEc:eee:agisys:v:104:y:2011:i:2:p:175-190
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308-521X(10)00075-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Powell, J. M. & Fernandez-Rivera, S. & Hiernaux, P. & Turner, M. D., 1996. "Nutrient cycling in integrated rangeland/cropland systems of the Sahel," Agricultural Systems, Elsevier, vol. 52(2-3), pages 143-170.
    2. Tschirley, David L. & Jayne, T.S., 2010. "Exploring the Logic Behind Southern Africa's Food Crises," World Development, Elsevier, vol. 38(1), pages 76-87, January.
    3. Giller, Ken E. & Rowe, Ed C. & de Ridder, Nico & van Keulen, Herman, 2006. "Resource use dynamics and interactions in the tropics: Scaling up in space and time," Agricultural Systems, Elsevier, vol. 88(1), pages 8-27, April.
    4. Tittonell, P. & van Wijk, M.T. & Herrero, M. & Rufino, M.C. & de Ridder, N. & Giller, K.E., 2009. "Beyond resource constraints - Exploring the biophysical feasibility of options for the intensification of smallholder crop-livestock systems in Vihiga district, Kenya," Agricultural Systems, Elsevier, vol. 101(1-2), pages 1-19, June.
    5. Dekker, Marleen, 2004. "Sustainability and Resourcefulness: Support Networks During Periods of Stress," World Development, Elsevier, vol. 32(10), pages 1735-1751, October.
    6. Manlay, Raphael J. & Ickowicz, Alexandre & Masse, Dominique & Feller, Christian & Richard, Didier, 2004. "Spatial carbon, nitrogen and phosphorus budget in a village of the West African savanna--II. Element flows and functioning of a mixed-farming system," Agricultural Systems, Elsevier, vol. 79(1), pages 83-107, January.
    7. van Wijk, Mark T. & Tittonell, Pablo & Rufino, Mariana C. & Herrero, Mario & Pacini, Cesare & Ridder, Nico de & Giller, Ken E., 2009. "Identifying key entry-points for strategic management of smallholder farming systems in sub-Saharan Africa using the dynamic farm-scale simulation model NUANCES-FARMSIM," Agricultural Systems, Elsevier, vol. 102(1-3), pages 89-101, October.
    8. Sandford, Stephen & Scoones, Ian, 2006. "Opportunistic and conservative pastoral strategies: Some economic arguments," Ecological Economics, Elsevier, vol. 58(1), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Homann-Kee Tui, Sabine & Valbuena, Diego & Masikati, Patricia & Descheemaeker, Katrien & Nyamangara, Justice & Claessens, Lieven & Erenstein, Olaf & van Rooyen, Andre & Nkomboni, Daniel, 2015. "Economic trade-offs of biomass use in crop-livestock systems: Exploring more sustainable options in semi-arid Zimbabwe," Agricultural Systems, Elsevier, vol. 134(C), pages 48-60.
    2. Ronner, E. & Descheemaeker, K. & Almekinders, C. & Ebanyat, P. & Giller, K.E., 2019. "Co-design of improved climbing bean production practices for smallholder farmers in the highlands of Uganda," Agricultural Systems, Elsevier, vol. 175(C), pages 1-12.
    3. Foran, Tira & Butler, James R.A. & Williams, Liana J. & Wanjura, Wolf J. & Hall, Andy & Carter, Lucy & Carberry, Peter S., 2014. "Taking Complexity in Food Systems Seriously: An Interdisciplinary Analysis," World Development, Elsevier, vol. 61(C), pages 85-101.
    4. Ditzler, Lenora & Komarek, Adam M. & Chiang, Tsai-Wei & Alvarez, Stéphanie & Chatterjee, Shantonu Abe & Timler, Carl & Raneri, Jessica E. & Carmona, Natalia Estrada & Kennedy, Gina & Groot, Jeroen C.J, 2019. "A model to examine farm household trade-offs and synergies with an application to smallholders in Vietnam," Agricultural Systems, Elsevier, vol. 173(C), pages 49-63.
    5. Turmel, Marie-Soleil & Speratti, Alicia & Baudron, Frédéric & Verhulst, Nele & Govaerts, Bram, 2015. "Crop residue management and soil health: A systems analysis," Agricultural Systems, Elsevier, vol. 134(C), pages 6-16.
    6. Komarek, Adam M. & McDonald, Cam K. & Bell, Lindsay W. & Whish, Jeremy P.M. & Robertson, Michael J. & MacLeod, Neil D. & Bellotti, William D., 2012. "Whole-farm effects of livestock intensification in smallholder systems in Gansu, China," Agricultural Systems, Elsevier, vol. 109(C), pages 16-24.
    7. Jindo, Keiji & Schut, Antonius G.T. & Langeveld, Johannes W.A., 2020. "Sustainable intensification in Western Kenya: Who will benefit?," Agricultural Systems, Elsevier, vol. 182(C).
    8. Valbuena, Diego & Tui, Sabine Homann-Kee & Erenstein, Olaf & Teufel, Nils & Duncan, Alan & Abdoulaye, Tahirou & Swain, Braja & Mekonnen, Kindu & Germaine, Ibro & Gérard, Bruno, 2015. "Identifying determinants, pressures and trade-offs of crop residue use in mixed smallholder farms in Sub-Saharan Africa and South Asia," Agricultural Systems, Elsevier, vol. 134(C), pages 107-118.
    9. Meine van Noordwijk & Erika Speelman & Gert Jan Hofstede & Ai Farida & Ali Yansyah Abdurrahim & Andrew Miccolis & Arief Lukman Hakim & Charles Nduhiu Wamucii & Elisabeth Lagneaux & Federico Andreotti , 2020. "Sustainable Agroforestry Landscape Management: Changing the Game," Land, MDPI, vol. 9(8), pages 1-38, July.
    10. Marohn, Carsten & Troost, Christian & Warth, Benjamin & Bateki, Christian & Zijlstra, Mink & Anwar, Faizan & Williams, Benjamin & Descheemaeker, Katrien & Berger, Thomas & Asch, Folkard & Dickhoefer, , 2022. "Coupled biophysical and decision-making processes in grassland systems in East African savannahs – A modelling framework," Ecological Modelling, Elsevier, vol. 474(C).
    11. Andrieu, N. & Vayssières, J. & Corbeels, M. & Blanchard, M. & Vall, E. & Tittonell, P., 2015. "From farm scale synergies to village scale trade-offs: Cereal crop residues use in an agro-pastoral system of the Sudanian zone of Burkina Faso," Agricultural Systems, Elsevier, vol. 134(C), pages 84-96.
    12. Rodriguez, D & de Voil, P & Rufino, MC & Odendo, M & van Wijk, MT, 2017. "To mulch or to munch? Big modelling of big data," Agricultural Systems, Elsevier, vol. 153(C), pages 32-42.
    13. Mequanint B. Melesse & Amos Nyangira Tirra & Chris O. Ojiewo & Michael Hauser, 2021. "Understanding Farmers’ Trait Preferences for Dual-Purpose Crops to Improve Mixed Crop–Livestock Systems in Zimbabwe," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    14. Turner, Matthew D., 2020. "Assessment through socioecological abstraction: The case of nutrient management models in Sudano-Sahelian West Africa," Land Use Policy, Elsevier, vol. 96(C).
    15. Christian Thierfelder & Pauline Chivenge & Walter Mupangwa & Todd S. Rosenstock & Christine Lamanna & Joseph X. Eyre, 2017. "How climate-smart is conservation agriculture (CA)? – its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(3), pages 537-560, June.
    16. Baudron, Frédéric & Delmotte, Sylvestre & Corbeels, Marc & Herrera, Juan M. & Tittonell, Pablo, 2015. "Multi-scale trade-off analysis of cereal residue use for livestock feeding vs. soil mulching in the Mid-Zambezi Valley, Zimbabwe," Agricultural Systems, Elsevier, vol. 134(C), pages 97-106.
    17. van Wijk, Mark T., 2014. "From global economic modelling to household level analyses of food security and sustainability: How big is the gap and can we bridge it?," Food Policy, Elsevier, vol. 49(P2), pages 378-388.
    18. Berre, D. & Diarisso, T. & Andrieu, N. & Le Page, C. & Corbeels, M., 2021. "Biomass flows in an agro-pastoral village in West-Africa: Who benefits from crop residue mulching?," Agricultural Systems, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrieu, N. & Vayssières, J. & Corbeels, M. & Blanchard, M. & Vall, E. & Tittonell, P., 2015. "From farm scale synergies to village scale trade-offs: Cereal crop residues use in an agro-pastoral system of the Sudanian zone of Burkina Faso," Agricultural Systems, Elsevier, vol. 134(C), pages 84-96.
    2. Giller, K.E. & Tittonell, P. & Rufino, M.C. & van Wijk, M.T. & Zingore, S. & Mapfumo, P. & Adjei-Nsiah, S. & Herrero, M. & Chikowo, R. & Corbeels, M. & Rowe, E.C. & Baijukya, F. & Mwijage, A. & Smith,, 2011. "Communicating complexity: Integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development," Agricultural Systems, Elsevier, vol. 104(2), pages 191-203, February.
    3. Berre, D. & Diarisso, T. & Andrieu, N. & Le Page, C. & Corbeels, M., 2021. "Biomass flows in an agro-pastoral village in West-Africa: Who benefits from crop residue mulching?," Agricultural Systems, Elsevier, vol. 187(C).
    4. Tittonell, Pablo & Gérard, Bruno & Erenstein, Olaf, 2015. "Tradeoffs around crop residue biomass in smallholder crop-livestock systems – What’s next?," Agricultural Systems, Elsevier, vol. 134(C), pages 119-128.
    5. Andrieu, Nadine & Descheemaeker, Katrien & Sanou, Thierry & Chia, Eduardo, 2015. "Effects of technical interventions on flexibility of farming systems in Burkina Faso: Lessons for the design of innovations in West Africa," Agricultural Systems, Elsevier, vol. 136(C), pages 125-137.
    6. Comas, Jordi & Connor, David & Isselmou, Mohamed El Moctar & Mateos, Luciano & Gómez-Macpherson, Helena, 2012. "Why has small-scale irrigation not responded to expectations with traditional subsistence farmers along the Senegal River in Mauritania?," Agricultural Systems, Elsevier, vol. 110(C), pages 152-161.
    7. Rodriguez, D & de Voil, P & Rufino, MC & Odendo, M & van Wijk, MT, 2017. "To mulch or to munch? Big modelling of big data," Agricultural Systems, Elsevier, vol. 153(C), pages 32-42.
    8. Meine van Noordwijk & Erika Speelman & Gert Jan Hofstede & Ai Farida & Ali Yansyah Abdurrahim & Andrew Miccolis & Arief Lukman Hakim & Charles Nduhiu Wamucii & Elisabeth Lagneaux & Federico Andreotti , 2020. "Sustainable Agroforestry Landscape Management: Changing the Game," Land, MDPI, vol. 9(8), pages 1-38, July.
    9. Schut, Marc & van Paassen, Annemarie & Leeuwis, Cees & Bos, Sandra & Leonardo, Wilson & Lerner, Anna, 2011. "Space for innovation for sustainable community-based biofuel production and use: Lessons learned for policy from Nhambita community, Mozambique," Energy Policy, Elsevier, vol. 39(9), pages 5116-5128, September.
    10. Komarek, Adam M. & McDonald, Cam K. & Bell, Lindsay W. & Whish, Jeremy P.M. & Robertson, Michael J. & MacLeod, Neil D. & Bellotti, William D., 2012. "Whole-farm effects of livestock intensification in smallholder systems in Gansu, China," Agricultural Systems, Elsevier, vol. 109(C), pages 16-24.
    11. Monjardino, M. & Philp, J.N.M. & Kuehne, G. & Phimphachanhvongsod, V. & Sihathep, V. & Denton, M.D., 2020. "Quantifying the value of adopting a post-rice legume crop to intensify mixed smallholder farms in Southeast Asia," Agricultural Systems, Elsevier, vol. 177(C).
    12. van Wijk, Mark T. & Tittonell, Pablo & Rufino, Mariana C. & Herrero, Mario & Pacini, Cesare & Ridder, Nico de & Giller, Ken E., 2009. "Identifying key entry-points for strategic management of smallholder farming systems in sub-Saharan Africa using the dynamic farm-scale simulation model NUANCES-FARMSIM," Agricultural Systems, Elsevier, vol. 102(1-3), pages 89-101, October.
    13. Konstantinos Matakos & Dimitrios Minos & Ari Perdana & Elizabeth Radin, 2022. "“Dragon boating” alone? Community ties and systemic income shocks," Journal of International Development, John Wiley & Sons, Ltd., vol. 34(1), pages 55-81, January.
    14. Campbell, Bruce M. & Gordon, Iain J. & Luckert, Martin K. & Petheram, Lisa & Vetter, Susanne, 2006. "In search of optimal stocking regimes in semi-arid grazing lands: One size does not fit all," Ecological Economics, Elsevier, vol. 60(1), pages 75-85, November.
    15. Nyakudya, Innocent Wadzanayi & Stroosnijder, Leo & Nyagumbo, Isaiah, 2014. "Infiltration and planting pits for improved water management and maize yield in semi-arid Zimbabwe," Agricultural Water Management, Elsevier, vol. 141(C), pages 30-46.
    16. Zhou Yujun & Baylis Kathy, 2020. "Effects of Stockholding Policy on Maize Prices: Evidence from Zambia," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 18(1), pages 1-11, January.
    17. Christophe Gouel, 2013. "Rules versus Discretion in Food Storage Policies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(4), pages 1029-1044.
    18. Elodie Maître d'Hôtel & Tristan Le Cotty & Thom Jayne, 2013. "Trade Policy Inconsistency and Maize Price Volatility: An ARCH Approach in Kenya," African Development Review, African Development Bank, vol. 25(4), pages 607-620, December.
    19. de Ridder, Nico & Breman, Henk & van Keulen, Herman & Stomph, Tjeerd Jan, 2004. "Revisiting a `cure against land hunger': soil fertility management and farming systems dynamics in the West African Sahel," Agricultural Systems, Elsevier, vol. 80(2), pages 109-131, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:104:y:2011:i:2:p:175-190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.